
MobiWear: A Plausibly Deniable Encryption
System for Wearable Mobile Devices

Niusen Chen1, Bo Chen1?, and Weisong Shi2

1 Department of Computer Science, Michigan Technological University, Michigan,
United States

2 Department of Computer Science, Wayne State University, Michigan, United States
bchen@mtu.edu

Abstract. Mobile computing devices are widely used in our daily life.
With their increased use, a large amount of sensitive data are collected,
stored, and managed in the mobile devices. To protect sensitive data,
encryption is often used but, traditional encryption is vulnerable to co-
ercive attacks in which the device owner is coerced by the adversary to
disclose the decryption key. To defend against the coercive attacks, Plau-
sibly Deniable Encryption (PDE) has been designed which can allow the
victim user to deny the existence of hidden sensitive data. The PDE sys-
tems have been explored broadly for smartphones. However, the PDE
systems which are suitable for wearable mobile devices are still missing
in the literature.
In this work, we design MobiWear, the first PDE system specifically for
wearable mobile devices. To accommodate the hardware nature of wear-
able devices, MobiWear: 1) uses image steganography to achieve PDE,
which suits the resource-limited wearable devices; and 2) relies on various
sensors equipped with the wearable devices to input passwords, rather
than requiring users to enter them via a keyboard or a touchscreen. Se-
curity analysis and experimental evaluation using a real-world prototype
(ported to an LG G smartwatch) show that MobiWear can ensure deni-
ability with a small computational overhead as well as a small decrease
of image quality.

Keywords: Confidentiality · Plausibly deniable encryption · Wearable
mobile devices · Image steganography · Digital watermarking

1 Introduction

Mobile computing devices are ubiquitous today. More and more people choose
to use their mobile devices, e.g. smartphones, tablets, smartwatches, to manage
their personal private or even mission critical data. To protect confidentiality
of sensitive data, full disk encryption (FDE) has been integrated into major
mobile operating systems including Android [29] and iOS [15]. FDE can encrypt/
decrypt data transparently to users, such that without having access to the secret

? Corresponding author.



key, the attacker will not be able to access plaintext of the data. FDE however,
can only defend against a passive attacker which tries to steal sensitive data from
external storage [21] of the mobile devices. It cannot defend against an active
attacker which can capture the device owner and force him/ her to disclose the
secret key, i.e., a coercive attack. This type of coercive attackers can be found
broadly in the real world. For example, a journalist uses a mobile device to collect
criminal evidence of atrocities in a region of oppression, and stores the evidence
encrypted; when he/ she crosses the border, a border inspector may notice this
encrypted ciphertext and require him/ her to hand in the decryption key [27].
Plausibly deniable encryption (PDE) has been designed to ensure confidentiality
of data against this type of coercive attacks. PDE can allow a victim user to deny
the very existence of the hidden sensitive data upon being coerced. Its rationale
is, data are encrypted in a special way so that, sensitive private data will be
revealed only if a true key is used for decryption but, if a decoy key is used, only
non-sensitive public data will be disclosed; when a device owner is coerced, he/
she can simply disclose the decoy key and, using the decoy key, the attacker can
obtain the non-sensitive data but will be unaware of the existence of the hidden
sensitive data.

The concept of PDE has been broadly adapted to mobile devices [27, 28,
33, 6, 25, 5, 21, 17, 16, 7, 14, 13] to protect hidden sensitive data against coercive
attacks. We have a few observations on those existing mobile PDE systems.
First, most of them are specifically built for smartphones [27, 28, 33, 25, 5, 7, 14,
13], rather than wearable mobile devices like smartwatches. The PDE systems
for the wearable devices have broader applications compared to smartphones.
This is because, compared to using a smartphone, using a wearable device (e.g.,
an Apple watch) to capture criminal evidence (e.g., taking photos or recording
videos) is more convenient and less likely to be noticeable3. Second, most of them
rely on either the hidden volume technique [27, 28, 33, 6, 5, 21, 17, 16, 9] or the
steganographic file system [25, 7], and both techniques incline to hide sensitive
data among randomness which suffers from several limitations: 1) Filling the
randomness will cause expensive extra overhead. 2) An implied assumption needs
to be made that, filling the randomness itself is a normal behavior and will not
lead to compromise PDE.

This work aims to build a PDE system for wearable mobile devices, using
smartwatches as a representative. The resulted system, MobiWear, is the first
system which can allow a wearable device user to deny the very existence of
hidden sensitive data when facing coercive attacks. Our key insights are two-
fold: First, we do not rely on randomness to hide sensitive data; instead, we
utilize image steganography. Specifically, having observed that images usually
use digital watermarking to protect intellectual property, we choose to embed
the sensitive data in the watermarks of images, so that upon being coerced, the
hidden sensitive data can be denied as the regular image watermarks. Our image
steganography does not incur too much overhead and is suitable for the light-

3 Note that the examples we show here are only limited to the scope of capturing
criminal evidence in a region of oppression or conflict.

2



weight wearable devices. In addition, we do not rely on the implied assumption
that filling the randomness is a normal system behavior. Second, we carefully
adapt the PDE system to the wearable devices. A PDE system usually requires
some sorts of secrets, i.e., some low-security-level secrets which can be disclosed
to the adversary (e.g., the decoy keys), as well some high-security-level secrets
(e.g., the true keys) which should be unknown to the adversary. In traditional
PDE systems for smartphones [27, 6, 7], the secrets are entered by users using a
keyboard or a touchscreen; in a wearable device however, the screen is usually
small, rendering it a “bad” practice to enter the secrets using either a keyboard or
a touchscreen. Therefore, we rely on various sensors equipped with the wearable
devices to enter the secrets.
Contributions. We summarize our major contributions as follows:

– We have designed the first PDE system specifically for wearable mobile com-
puting devices, by combining the concept of PDE, image steganography, as
well as digital watermarking, and adapting the design to the wearable de-
vices. MobiWear is a light-weight PDE system which is well integrated with
the hardware features of the wearable devices and well suits the resources-
limited wearable devices.

– We have implemented a real-world prototype of MobiWear in an LG G smart-
watch and evaluated its performance.

– We have also analyzed the security as well as discuss a few potential security
issues.

2 Background

2.1 Wearable Mobile Devices

A wearable mobile computing device is a mobile device which can be worn on the
body. The wearable devices can be used for the purpose of general computing, as
well as special purposes like fitness tracker. They usually integrate a few special
sensors like accelerometers, gyroscopes, magnetometers, heart rate sensors, and
pedometers. The most popular wearable device is the smartwatch. Besides the
basic functionality of a regular watch, the modern smartwatch may include vari-
ous extra peripherals to achieve “smartness”, e.g., digital cameras, tiny speakers,
GPS receivers, pedometers, heart rate sensors, thermometers, accelerometers, al-
timeters, barometers, compasses, gyroscopes. Compared to a smartphone which
is usually much larger in size and equipped with more powerful hardware (e.g.,
much larger touchscreens, more powerful processors, RAM, and batteries), the
smartwatch is small in size and equipped with less powerful hardware, e.g., us-
ing small screens which do not well support user input, being equipped with less
powerful processors, RAM, and batteries.

2.2 Plausibly Deniable Encryption

Plausibly deniable encryption (PDE) systems are designed to protect sensitive
information when a device owner is coerced by an adversary. Upon being coerced,

3



the device owner only reveals the decoy key which can be used to decrypt non-
sensitive data. The actual secret key (i.e., true key) which can be used to decrypt
the sensitive data will be kept confidential and therefore, sensitive data are
protected.

Currently, there are two major techniques which can implement the PDE
concept in systems, namely, the steganography [4] and the hidden volume. The
steganography-based PDE system hides sensitive data in regular files or ran-
domness arbitrarily filled. However, since the system which manages the public
non-sensitive data should not know the existence of the hidden sensitive data
and, therefore, the hidden sensitive data may be overwritten by the public data.
To mitigate this overwrite issue, several copies of hidden sensitive data are usu-
ally maintained across the entire disk. The hidden volume-based PDE system
hides the sensitive data in a hidden volume. Its idea is: initially, the entire disk
is filled with random data, and two volumes, a public and a hidden volume,
are created; the public volume stores the public non-sensitive data, which are
encrypted with a decoy key and placed across the entire disk; the hidden volume
stores the sensitive data, which are encrypted with a true key and placed at the
end of the disk starting from a secret offset; the hidden volume is completely
embedded in the empty space of the public volume and, the attacker cannot de-
tect its existence since he/ she can not differentiate the encrypted hidden data
from the randomness filled initially.

2.3 Image Steganography

Image steganography is often used to hide information in a cover image. Its
process is as follows (Figure 1): Secret data (e.g., texts or images) are stored
invisibly in a cover image, generating a stego-image; this stego-image can then
be sent to a receiver, where any third party will not be able to find out that
the stego-image has hidden the secret data [19]; after having received the stego-
image, the receiver can simply extract the secret data with or without a key [22].

In general, image steganography can hide secret data in two domains, the spa-
tial domain and the transform domain. The least significant bit (LSB) stegano-
graphic embedding is an extremely simple technique of hiding secret data in the
spatial domain. In an RGB image, each pixel consists of 4 channels, alpha (A),
red (R), green (G) and blue (B), each of which occupies one byte. Alpha repre-
sents the value of transparency, and red, green and blue represent the value of
three different colors. The last bit of each byte is called the least significant bit
since its value only has a small effect on the pixel value [26] and, therefore, this
bit can be used to hide sensitive data. A typical algorithm [20, 3] for embedding
the secret data is as follows: Given a secret key, a cover image and the secret
data to be embedded, we first add two flags to the head and the tail of the se-
cret data, respectively, generating the extended secret data. The two flags mark
the beginning and the end of the secret data. We then encrypt the extended
secret data using the secret key, and the resulted ciphertext will be treated as
a collection of bits, which will be embedded sequentially to the pixels of the
cover image (i.e., the least significant bit of each byte in a pixel will be used),

4



Fig. 1: Image steganography.

generating a stego-image. Given the stego-image and the secret key, the extrac-
tion process of the LSB technique is: we extract the least significant bits from
pixels of the stego-image, decrypting them via the secret key, and can identify
the beginning and the end of the secret data using the flags added during the
embedding process; in general, it is no need to decrypt all the LSB bits, since we
can treat the entire LSB bits as a collection of units (e.g., each unit can be 128
bits for AES-128), and decrypt each unit sequentially from the beginning until
the “end” flag is found.

There are some variants of the LSB technique, e.g., pixel value differencing
(PVD) [31], random pixel embedding method (RPE) [23], and pixel intensity
based method [18]. The LSB technique has some advantages, including: 1) being
hard to be detected by human eyes; and 2) simplicity of implementation; and
3) high payload compared to transform domain technique. It also has some
disadvantages: 1) it is less robust compared to the transform domain technique;
2) the hidden data can easily be destroyed by simple attacks such as scaling and
cropping.

2.4 Digital Watermarking

Digital watermarking can reinforce the security of multimedia data, by providing
a solution to ensure tamper resistance as well as ownership protection of intel-
lectual property [32]. A simple type of image watermarking is to embed a logo,
which is a visible watermark. This is usually used for public identification and
recognition. Another type of image watermarking is to embed an invisible wa-

5



termark, which has been used broadly in multimedia data (e.g., images, videos)
to claim copyrights.

2.5 Peak Signal-to-Noise Ratio (PSNR)

Peak Signal-to-Noise Ratio, PSNR, represents a ratio between the maximal pos-
sible power of a signal and the power of the noise. A higher PSNR usually in-
dicates a good image quality. PSNR can be computed via Equation 1, in which
MAXI is the maximal pixel value of the image, and MSE represents the mean
square error. The MSE of an m × n image can be computed via Equation 2, in
which I is the original image and K is its noisy approximation.

PSNR = 20 · log10(MAXI) − 10 · log10(MSE) (1)

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j) −K(i, j)]2 (2)

3 Model and Assumptions

3.1 System Model

We consider a wearable mobile device, and its architecture is shown in Figure 2.
The architecture mainly contains three layers. The top layer is the application
layer, which contains various user apps that directly interact with users and
accept I/Os from users, e.g., an image viewer or editor. The middle layer is the
operating system for wearable devices which, 1) manages the device’s hardware
resources, and 2) allows the apps to use the hardware resources via the system
APIs. A popular operating system is Wear OS [2]. The bottom layer is the
hardware which includes the processor, the RAM, and the flash storage. Note
that a flash-based block device like a microSD card is used broadly in wearable
devices, in which the flash memory is managed internally by flash translation
layer (FTL), exposing a regular block access interface.

3.2 Adversarial Model

We consider a computationally bounded adversary. The adversary is able to
capture a victim user together with his/ her mobile device. The adversary notices
the existence of ciphertext in the device and may coerce the victim user to
disclose keys which can be used to decrypt the ciphertext. We need to rely on a
few reasonable assumptions:

– The adversary is rationale and will stop coercing the victim user after being
convinced that the keys have been disclosed. This is a common assumption
for all the PDE designs [27, 6, 7, 21].

6



Fig. 2: The architecture of a wearable mobile device.

– The adversary cannot capture a victim user when he/ she is right processing
the hidden sensitive data. Otherwise, the sensitive data will be obtained by
the adversary trivially.

– We do not consider the attack that the adversary injects malware into the
device before capturing it. Otherwise, the malware can monitor the process
of embedding hidden data and compromise PDE trivially.

– The adversary is assumed to be able to obtain both the original cover image
and the stego-image (i.e., the resulted image after the sensitive data are
embedded), and to perform forensic analysis over them. The stego-image
can be easily obtained once the wearable device is captured. The cover image
may be obtained by the adversary considering that the cover image may be
obtained from external sources, e.g., the device owner purchased it from
others. However, the adversary is assumed to be not able to obtain the
watermark image which is created locally by the device owner and has not
been disclosed to the public. Note that a cautious user should delete the
watermark image locally once used.

4 Design

4.1 Design Rationale

MobiWear is a PDE system specifically designed for wearable mobile devices.
To ensure easy deployment of MobiWear, we integrate it into the application
layer (Figure 2) of a wearable mobile device. The design rationale of MobiWear
is described in the following.

Upon being coerced, the victim should be able to convince the adversary that
the noticeable embedding secrets are nothing but just some normal information.
In the hidden volume-based technique [27, 6] or steganographic file systems [25],

7



the secret sensitive data are denied as randomness, which are filled by the device.
This requires making the assumption that filling randomness is a normal system
behavior [27, 6, 21]. Having observed that images can embed watermarks for
intellectual property protection, we choose to hide the sensitive data into the
images stored in the device, and deny them as the watermarks embedded into
the images.

The process for embedding secret sensitive data into images is as follows
(Figure 3): Given some secret sensitive data, we first pick a cover image as
well as a watermark image which will be embedded into the cover image. We
then perform two steps: 1) We encrypt the sensitive data using a true key and,
the resulted ciphertext will be embedded into the watermark image, obtaining a
stego-watermark; 2) We encrypt the stego-watermark using a decoy key and, the
resulted ciphertext will be embedded into the cover image, obtaining a stego-
image. The stego-image will be stored to the wearable mobile device.

After the victim user is captured together with his/ her wearable device, the
adversary may notice that something is stored hidden in the stego-image. Note
that the adversary is assumed to be able to obtain both the original cover image
and the stego-image (Sec. 3.2). The adversary will coerce the victim user for
the hidden sensitive data. The victim user will disclose the decoy key and claim
that there is a watermark embedded in the stego-image. Utilizing the decoy key,
the adversary can successfully extract the watermark (i.e., the stego-watermark)
from the stego-image. The adversary will not be able to notice anything special
in the stego-watermark, since it does not have access to the actual watermark
(Sec. 3.2), and convince that there are no secret sensitive data stored. Only by
utilizing the true key, the actual secret sensitive data can be extracted.

4.2 Design Details

How to input keys. Due to the small size of a wearable mobile device, using
a keyboard or a touchscreen to enter keys is very inconvenient and impractical.
We therefore rely on the embedded sensors in the wearable device to enter keys.
There are many sensors such as accelerometer, gyroscope, heart rate sensor and
compass sensor equipped with the wearable mobile devices. In MobiWear, we
choose the gyroscope, which can be used to measure the rotation rate of x-
axis, y-axis, and z-axis. Compared to other types of sensors, the gyroscope is
a more convenient and robust choice for a wearable device’s user to generate
different input, each corresponding to a different key. For example, a user who
is wearing a smartwatch can simply rotate his/her wrist differently to generate
unique keys and, after obtaining the rotation rate from the gyroscope, the device
can calculate the rotation degree in a time interval, generating unique keys. In
MobiWear, two different keys, a decoy key and a true key, are generated. The
decoy key is used to hide/ extract the stego-watermark into/ from the stego-
image, and the true key is used to hide/ extract the hidden sensitive data into/
from the stego-watermark.
Information hiding and extracting. The process of hiding secret sensitive
data includes two steps: 1) hiding the sensitive data into the watermark image,

8



Fig. 3: The process of embedding secret sensitive data.

obtaining a stego-watermark; and 2) hiding the stego-watermark into the cover
image, obtaining a stego-image. For step 1, the sensitive data are encrypted
using the true key and embedded into the watermark image, using the LSB
steganographic embedding technique (Sec. 2.3). Similarly for step 2, the stego-
watermark is encrypted using the decoy key and embedded into the cover image
(via the LSB technique). Extracting sensitive information is the reverse operation
of the information hiding. Once both the decoy and the true key are provided,
MobiWear can use the decoy key to extract the stego-watermark from the cover
image (i.e., via the extraction process of the LSB technique in Sec. 2.3), and then
use the true key to extract the sensitive data from the stego-watermark (via the
extraction process of the LSB technique). If only the decoy key is provided,
only the stego-watermark can be extracted, denying the existence of the hidden
sensitive data.
User authentication. The user is required to enter the decoy key first and, if
the decoy key is correct, MobiWear will wait for a certain amount of time (e.g.,
a few seconds). During this time interval, the user can enter the true key and,
if the true key is entered within this time period and it is correct, the secret
sensitive data will be extracted and displayed; otherwise, the stego-watermark
will be displayed. The entire process for user authentication is shown in Figure 4.
Upon being coerced, the victim will disclose the decoy key and, using the decoy
key, the adversary will be able to see the extracted stego-watermark, but will

9



Fig. 4: The process of user authentication.

not be aware of the existence of the hidden sensitive data. Although there is a
short delay after entering the decoy key, this can be simply denied as the system
delay due to the limited computational power of a wearable device.

5 Implementation and Evaluation

5.1 Implementation

We have implemented MobiWear in an LG G watch [1], which has been released
by LG and Google. It is equipped with Qualcomm Snapdragon 400 processor,
512MB memory and 4GB flash storage. Its embedded sensors include accelerom-
eter, digital compass and gyroscope. The default operating system is Android
Wear 1.5.0, which does not well support image viewing, and we have ported
Android Wear OS 2.0 instead to resolve this issue. For image steganography, we
relied on an open-source image steganography library [3], which has implemented
the LSB steganographic embedding technique for Android. The encryption is in-
stantiated using AES-128. Our major implementations are: 1) We support the
password input via the embedded sensor gyroscope of the LG G watch; 2) We
implement the PDE authentication via both the decoy and the true key; 3) We
implement the information hiding and extracting process via the decoy and the
true key.

5.2 Evaluation

Computational overhead. We first evaluate the computational time of MobiWear
in hiding/ extracting data under different lengths of the secret data, while fix-
ing the size of both the cover image and the watermark image. The results are

10



Fig. 5: Computational time for hiding and extracting sensitive data when the
size of the cover image and the watermark image is fixed (the cover image is
1.5MB in size, and the watermark image is 20KB in size).

shown in Figure 5. We can observe that: 1) For longer secret data, MobiWear
needs more time in hiding/ extracting secret data. This is because: for longer
secret data, MobiWear will need to embed/ extract more secret bits into/ from
the watermark image, which will increase the time; but the time for embedding/
extracting the watermark image into/ from the cover image will be identical. 2)
Extracting the secret data is slower than hiding them. This is because: when
embedding the data upon generating the stego-watermark and the stego-image
(Sec. 2.3), two flags which indicate the begin and the end of the data are added
and, when extracting them, we need to decrypt the LSB bits in terms of units
until finding the end flag; this leads to extra overhead in decrypting more data
and locating the end flag.

We then evaluate how the size of the watermark image and the cover image
will affect the time of hiding/ extracting secret data. We fix the length of the
secret data as 20 bytes, and evaluate the hiding/ extracting time under different
sizes of the watermark and the cover image. The results are shown in Figure 6.
We can observe that: 1) The time for hiding/ extracting the secret data slightly
increases when the size of the cover/ watermark image increases. This is because:
both the cover and the watermark image need to be loaded into the memory for
further processing, which slightly increases the computational time. 2) The time
for extracting the secret data is more than that for hiding them. The reason has
been mentioned before.
Assessing PSNR. To understand how MobiWear affects the image quality, we
compute the PSNR values by varying the lengths of the secret data. We first
hide the secret data with length 20, 40 and 60 (in bytes) in a watermark image,
generating a corresponding stego-watermark, which is then embedded into the
cover image. The size of the watermark image is fixed as 20KB and the size of the

11



Fig. 6: Computational time for hiding and extracting sensitive data when the
size of both the watermark image and the cover image varies. For the x-axis,
(a,b) represents (size of watermark image in KBs, size of cover image in MBs).

length of secret data (bytes) 20 40 60

PSNR 30.6257 30.6153 30.5500

Table 1: PSNR of stego-images under different lengths of secret data.

cover image is fixed as 1.5MB. We calculate the PSNR of each stego-image. The
results are shown in Table 1. We can observe that, longer secret data will result
in lower PSNR values, which indicates a worse image quality. This is because the
longer secret data will occupy more least significant bits and increase the noise
ratio. But still, the difference between the cover image and the stego-images is
hard to be detected by human, which is justified in Figure 7.

We also compare the PSNR values between original watermark image and
the stego-watermark by varying the lengths of the secret data. The results are
shown in Table 2. We can observe that a stego-watermark with longer secret
data embedded has a lower PSNR value. This is because longer secret data will
occupy more bits in the watermark image, decreasing its image quality. But, the
difference between the original watermark image and the stego-watermarks is
also hard to be detected by human, which is justified in Figure 8.

length of secret data (bytes) 20 40 60

PSNR 33.8356 33.7800 30.7610

Table 2: PSNR of stego-watermarks under different lengths of secret data.

12



(a) Cover Image (b) Length=20 (c) Length=40 (d) Length=60

Fig. 7: The visualized comparison between the cover image (a) and stego-images
(b-d) hiding secret data of different lengths.

(a) Watermark (b) Length=20 (c) Length=40 (d) Length=60

Fig. 8: The visualized comparison between the original watermark image (a) and
the stego-watermarks (b-d) hiding secret data of different lengths.

6 Security Analysis and Discussion

6.1 Security Analysis

After having captured a victim wearable device, the adversary will obtain the
stego-image from the device. For simplicity, we assume there is only one image
in the device, which can be easily generalized to the actual case that there
are multiple images. The adversary will obtain the corresponding cover image
somehow (Sec. 3.2). By comparing the cover image and the stego-image, the
adversary can identify differences between them and notice something has been
embedded stealthily in the cover image. Note that since we use the invisible
watermark (Sec. 2.4) in MobiWear and, without having access to the original
cover image, the adversary should not be able to notice something has been
hidden. By coercing the victim user, the adversary will be able to obtain the
decoy key and, using the decoy key, the adversary will then extract the stego-
watermark.

The adversary further performs forensic analysis over the extracted stego-
watermark. This however, will not give the adversary any advantage of identi-
fying the existence of hidden sensitive data because: The adversary cannot have
access to the original watermark image (Sec. 3.2) and, without being able to

13



compare the stego-watermark with the original watermark, there is no way for
the adversary to identify whether there are any modifications over the LSBs of
the stego-watermark’s pixels (solely viewing the stego-watermark will not result
in any visualized abnormality).

Therefore, we can conclude that, the adversary will not be able to identify
the existence of PDE and the security of MobiWear can be ensured.

6.2 Discussion

About the length of sensitive data which can be hidden. MobiWear
hides the sensitive data into the image and, the length of the hidden data will
be limited by the size of the image and the corresponding watermark. Given an
ARGB cover image with N pixels and each pixel consisting of 4 bytes (alpha, red,
green, blue), we analyze the length of the sensitive data which can be hidden.
Using the LSB technique, the maximal size of watermark the cover image can
embed is N

2 bytes considering 1 bit out of each byte can be used to embed the
watermark. Correspondingly, the maximal length of secret sensitive data which
can be hidden in the watermark is N

16 bytes. For example, a 4MB cover image
will have 1M pixels, and can hide up to 0.0625MB sensitive data. To hide more
sensitive data, we can use more least significant bits, which however will decrease
the quality of the image. A practical mitigation is to cut the sensitive data of
large size into small chunks, and to hide each chunk using a different cover image.
Deniability compromises in memory. Secret sensitive data may leave traces
in the memory, leading to compromise of PDE. Considering the volatile nature
of RAM, an immediate mitigation strategy is to power-off the device to remove
the traces of secret sensitive data in the memory. Other mitigation strategies
include utilizing hardware isolation techniques like ARM TrustZone to isolate
the memory region which processes the hidden sensitive data [5].
Defending against multi-snapshot adversaries. MobiWear can defend against
an adversary which can have access to the victim device once. Note that by using
image steganography, MobiWear remains secure even if the adversary can have
access to different layers of the system (Figure 2). If the adversary can capture
the device and its owner multiple times, it will have multiple access to the de-
vice over time, and a potential PDE compromise could be: If the secret sensitive
data are modified and a new stego-watermark needs to be re-embedded into
the original cover image and, by comparing the stego-image at different points
of time, the adversary may be aware of the existence of hidden sensitive data.
A potential mitigation strategy can be, each time when the sensitive data are
modified, the device owner should discard the corresponding stego-image which
turns obsolete, and hide the new data using a new cover image.
Mitigating data corruptions. MobiWear uses the LSB technique to hide se-
cret sensitive data. This is vulnerable to cutting and cropping attack which will
destroy the sensitive data. However, the goal of PDE is to ensure confidential-
ity of the sensitive data, rather than to prevent data from being corrupted. A
recommendation for mitigating corruption attacks is to periodically back up the
sensitive data, e.g., to a remote cloud server or an offline personal computer.

14



7 Related Work

7.1 Plausibly Deniable Encryption Systems

Plausibly deniable encryption has been designed to defend against coercive at-
tacks so that even though the key is forced to be disclosed, the critical sensi-
tive data can remain protected. There are mainly two types of PDE systems,
the steganography-based PDEs and the hidden volume-based PDEs. There are
also PDE systems relying on other techniques like side channel [10] and WOM
codes [11].
The steganography-based PDE systems. The first steganography-based
PDE system [4] was proposed by Anderson et al. They designed two schemes.
The first one is to hide sensitive data in cover files, which however, requires
the system to store a large number of cover files. The second one is to fill the
entire disk with random data and, to encrypt and hide the secret data in those
random data. Based on the second scheme of Anderson et al., McDonald et
al. designed StegFS [24], in which they extended a standard Linux file system
(EXT2) with PDE support. Peters et al. proposed DEFY [25], a flash file system
which supports PDE. Its features include authenticated encryption, fast secure
deletion, and support for multiple layers of deniability.
The hidden-volume based PDE systems. The other technique which can
be used to achieve PDE is the hidden volume technique. TrueCrypt [30] and
VeraCrypt [12] are open-source projects for disk encryption, with deniability
support using the hidden volume technique. Skillen et al. [27, 28] proposed Mob-
iflage which moved the hidden volume technique to mobile computing devices.
Mobiflage requires the user to re-boot the device to enter the hidden mode, which
is inconvenient. To mitigate this issue, Yu et al. proposed MobiHydra [33] which
supports data hiding without the need of rebooting the device. MobiHydra also
solved a boot-time attack on the PDE systems. Chang et al. proposed Mobi-
pluto [6, 5], a file system friendly PDE system such that any block-based file
systems can be deployed on top of the public volume, without worrying about
overwriting the hidden sensitive data. Jia et al. [21] further moved the hidden
volume to the flash translation layer, eliminating the deniability compromised
in the low-level flash memory medium. Having observed that the prior mobile
PDE systems cannot defend against a multi-snapshot adversary, Chang et al.
designed MobiCeal [7], which combines both the hidden volume technique and
the dummy write technique to enable defend against multi-snapshot adversaries.

7.2 Image Steganograyphy

Image steganography has been widely used to claim the ownership or copyright
of the products. Wu et al. [31] proposed an efficient steganographic method to
embed secret messages into cover images, which is based on a simple visual effect
of the human visual perception. Ibrahim et al. [20] proposed an algorithm to hide
data in cover images, by using binary codes and pixels inside an image. Based on
the proposed algorithm, a system called Steganography Imaging System (SIS) is

15



built which can hide secret message without a noticeable distortion. Chaumon-
tet et al. [8] proposed a DCT-based data hiding method which can hide color
information in a compressed gray-level image. Their proposed method consists
of three steps, color quantization, color ordering, and data hiding.

8 Conclusion

In this work, we design MobiWear, a plausibly deniable encryption system for
wearable mobile devices. MobiWear uses image steganography to hide sensitive
data and utilizes the integrated sensors to input secrets. The experiment results
indicate that MobiWear can achieve deniability with a small overhead as well as
a slight decrease of image quality.

Acknowledgments. This work was supported by US National Science Foun-
dation under grant number 1928349-CNS, 1928331-CNS, and 1938130-CNS.

References

1. Lg g watch. https://www.lg.com/us/smart-watches/lg-W100-lg-watch, 2016.
2. Wear os. https://wearos.google.com/#stay-connected, 2016.
3. Ayush Agarwal. Image-steganography-library-android.

https://github.com/aagarwal1012/Image-Steganography-Library-Android, 2011.
4. Ross Anderson, Roger Needham, and Adi Shamir. The steganographic file system.

In International Workshop on Information Hiding, pages 73–82. Springer, 1998.
5. Bing Chang, Yao Cheng, Bo Chen, Fengwei Zhang, Wen-Tao Zhu, Yingjiu Li,

and Zhan Wang. User-friendly deniable storage for mobile devices. Computers &
Security, 2017.

6. Bing Chang, Zhan Wang, Bo Chen, and Fengwei Zhang. Mobipluto: File system
friendly deniable storage for mobile devices. In Proceedings of the 31st annual
computer security applications conference, pages 381–390, 2015.

7. Bing Chang, Fengwei Zhang, Bo Chen, Yingjiu Li, Wen-Tao Zhu, Yangguang Tian,
Zhan Wang, and Albert Ching. Mobiceal: Towards secure and practical plausibly
deniable encryption on mobile devices. In 2018 48th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN), pages 454–465.
IEEE, 2018.

8. Marc Chaumont and William Puech. A dct-based data-hiding method to embed
the color information in a jpeg grey level image. In 2006 14th European Signal
Processing Conference, pages 1–5. IEEE, 2006.

9. Bo Chen and Niusen Chen. Poster: A secure plausibly deniable system for mobile
devices against multi-snapshot adversaries.

10. Chen Chen, Anrin Chakraborti, and Radu Sion. Infuse: Invisible plausibly-deniable
file system for nand flash. Proceedings on Privacy Enhancing Technologies, 4:239–
254, 2020.

11. Chen Chen, Anrin Chakraborti, and Radu Sion. Pearl: Plausibly deniable flash
translation layer using wom coding. In The 30th Usenix Security Symposium, 2021.

12. CodePlex. Veracrypt ssd. https://veracrypt.codeplex.com/, 2017.

16



13. Dino Trnka. Steganography software.version 1.3. Project website:
https://play.google.com/store/apps/details?id=com.dinaga.photosecret&hl=en US&gl=US,
2014.

14. EDS. Free open source on-the-fly disk encryption software.version 2.0.0.243.
Project website: http://www.sovworks.com/, 2012.

15. How to encrypt your devices, 2017. https://spreadprivacy.com/how-to-encrypt-
devices/.

16. Wendi Feng, Chuanchang Liu, Zehua Guo, Thar Baker, Gang Wang, Meng Wang,
Bo Cheng, and Junliang Chen. Mobigyges: A mobile hidden volume for prevent-
ing data loss, improving storage utilization, and avoiding device reboot. Future
Generation Computer Systems, 2020.

17. Shuangxi Hong, Chuanchang Liu, Bingfei Ren, Yuze Huang, and Junliang Chen.
Personal privacy protection framework based on hidden technology for smart-
phones. IEEE Access, 5:6515–6526, 2017.

18. Mehdi Hussain and Mureed Hussain. Pixel intensity based high capacity data em-
bedding method. In 2010 International Conference on Information and Emerging
Technologies, pages 1–5. IEEE, 2010.

19. Mehdi Hussain and Mureed Hussain. A survey of image steganography techniques.
2013.

20. Rosziati Ibrahim and Suk Kuan Teoh. Teganography algorithm to hide secret
message inside an image. Journal of Computer Technology and Apllication (JCTA),
1(2):102–108, 2011.

21. Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. Deftl: Implementing plausibly
deniable encryption in flash translation layer. In Proceedings of the 24th ACM
conference on Computer and communications security. ACM, 2017.

22. Neil F Johnson and Sushil Jajodia. Exploring steganography: Seeing the unseen.
Computer, 31(2):26–34, 1998.

23. Ling Liu, Tungshou Chen, Chen Cao, Xuan Wen, and Rongsheng Xie. A novel
data embedding method using random pixels selecting. Information Technology
Journal, 12(7):1299, 2013.

24. Andrew D McDonald and Markus G Kuhn. Stegfs: A steganographic file system
for linux. In Information Hiding, pages 463–477. Springer, 2000.

25. Timothy M Peters, Mark A Gondree, and Zachary NJ Peterson. DEFY: A deniable,
encrypted file system for log-structured storage. In 22th Annual Network and
Distributed System Security Symposium, NDSS, 2015.

26. Arun Kumar Singh, Juhi Singh, and Harsh Vikram Singh. Steganography in images
using lsb technique. International Journal of Latest Trends in Engineering and
Technology (IJLTET), 5(1):426–430, 2015.

27. Adam Skillen and Mohammad Mannan. On implementing deniable storage encryp-
tion for mobile devices. In 20th Annual Network and Distributed System Security
Symposium, NDSS 2013, San Diego, California, USA, February 24-27, 2013.

28. Adam Skillen and Mohammad Mannan. Mobiflage: Deniable storage encryption-
for mobile devices. IEEE Transactions on Dependable and Secure Computing,
11(3):224–237, 2014.

29. Source. Android full disk encryption. https://source.android.com/security/encryption/,
2016.

30. TrueCrypt. Free open source on-the-fly disk encryption software.version 7.1a.
Project website: http://www.truecrypt.org/, 2012.

31. Da-Chun Wu and Wen-Hsiang Tsai. A steganographic method for images by pixel-
value differencing. Pattern recognition letters, 24(9-10):1613–1626, 2003.

17



32. Weijing You, Bo Chen, Limin Liu, and Jiwu Jing. Deduplication-friendly water-
marking for multimedia data in public clouds. In European Symposium on Research
in Computer Security, pages 67–87. Springer, 2020.

33. Xingjie Yu, Bo Chen, Zhan Wang, Bing Chang, Wen Tao Zhu, and Jiwu Jing.
Mobihydra: Pragmatic and multi-level plausibly deniable encryption storage for
mobile devices. In Information Security - 17th International Conference, ISC 2014,
Hong Kong, China, October 12-14, 2014. Proceedings, pages 555–567, 2014.

18


