
Ensuring Data Confidentiality in Mobile
Computing Devices via Plausibly Deniable

Encryption and Secure Deletion

Presenter: Niusen Chen

Mobile Devices are Ubiquitous

Smartphone Tablet

Smartwatch (wearable device) 2IoT devices

The Mainstream Architecture of Mobile Devices

Flash memory-based block device: A storage device based on high-speed,
electrically programmable flash memory that supports reading and writing data in
fixed-size blocks, sectors, or clusters. These blocks are generally 512 bytes

EXT4, FAT, exFAT

3

EXT4, FAT, exFAT

Hardware Characteristics of Flash Memory

1. Read/Write on pages, but erase on blocks
2. Erase-before-write
3. Out-of-place update
4. Limited number of program/erase (P/E) cycles

4

Data area OOB area

A flash page
● Located at the end of each page
● Store extra information like error correcting code

5

Hardware Characteristics of Flash Memory (cont.)
5. Out-of-band (OOB) area

6. SLC and MLC

a. SLC: each memory cell stores 1 bit
b. MLC: each memory cell stores more than 1 bit

Special Functions Incorporated into Flash Storage Device

Garbage Collection: Blocks containing too many invalid pages will be
reclaimed by copying valid data out of them, and the reclaimed blocks
will be placed to free block pool to be reused

Wear Levelling: Distribute writes/erasures evenly across flash
memory

Bad Block Management: A flash block may turn “bad” over time and
cannot reliably store data. Bad block management typically introduces
a bad block table to keep track of bad blocks. Once a block turns bad,
it will be added to the bad block table and will no longer be used

6

How to Program Data to Flash Memory

7

Three rules:
● Initially, what in flash memory are all digital “1”s
● Digital “1” can be programmed to digital “0” (write

operation)
● Digital “0” cannot be programmed to “1” except a block

erasure operation

1 1 1 1 1

0 0 0 1 1

1 0 1 1 1

S0: 1 1 1 1 1

S1: 0 0 0 1 1

S2: 1 0 1 1 1

program

Digital “0” can not be programmed to
“1” except an erasure operation

erase

program

8

How to Use Flash Memory

Flash-specific File System
(YAFFS, UBIFS)

Flash Memory

Method 2: Flash File System

File System (FAT, EXT4)

Flash Translation Layer
(FTL)

Flash Memory

Method 1: FTL

Flash Translation Layer
(FTL)

9

Ensuring Data Confidentiality in Mobile Devices

10

How to ensure confidentiality of the sensitive data stored in mobile devices
even when the mobile device owner is captured and coerced to disclose the
key?

● Plausibly deniable encryption
● Ensure confidentiality of the data present in the storage media to

defend against coercive attack (confidentiality during the data lifetime)

How to ensure that data deleted by a mobile device owner are really
sanitized from the device?

● Secure deletion
● Ensure confidentiality of the data being deleted (confidentiality

after the data lifetime)

[1] Niusen Chen, and Bo Chen. Duplicates also Matter! Towards Secure Deletion on Flash-based Storage Media by Removing
Duplicates, under submission.

[2] Niusen Chen, Bo Chen, Weisong Shi. A Full-path Plausibly Deniable Encryption System for Mobile Devices, being submitted.

[3] Niusen Chen, Wen Xie, and Bo Chen. Combating the OS-level Malware in Mobile Devices by Leveraging Isolation and
Steganography. The Second ACNS Workshop on Secure Cryptographic Implementation (SCI '21)(in conjunction with ACNS '21),
Kamakura, Japan, June 2021.

[4] Niusen Chen, Bo Chen, and Weisong Shi. MobiWear: A Plausibly Deniable Encryption System for Wearable Mobile Devices.
The First EAI International Conference on Applied Cryptography in Computer and Communications (AC3 '21), Xiamen, China, May
2021. (Best Paper Award, top 2.4% of all the submissions)

[5] Bo Chen, and Niusen Chen. Poster: A Secure Plausibly Deniable System for Mobile Devices against Multi-snapshot
Adversaries. 2020 IEEE Symposium on Security and Privacy (S&P '20), poster paper, San Francisco, CA, May 2020.

[6] Wen Xie, Niusen Chen, and Bo Chen. Poster: Incorporating Malware Detection into The Flash Translation Layer. 2020 IEEE
Symposium on Security and Privacy (S&P '20), poster paper, San Francisco, CA, May 2020.

11

Publications

http://sulab-sever.u-aizu.ac.jp/ACNS2021/
https://ac3-conference.eai-conferences.org/2021/
https://www.ieee-security.org/TC/SP2020/
https://www.ieee-security.org/TC/SP2020/

Outline

● A Full-path Plausibly Deniable Encryption System for Mobile Devices (MobiPDE)
● A Plausibly Deniable Encryption System for Wearable Mobile Devices

(MobiWear)
● A Secure Deletion Scheme for Flash-based Devices by Removing Duplicates

(RedFlash)

12

A Full-path Plausibly Deniable Encryption
System for Mobile Devices (MobiPDE)

13

How to Protect the Confidentiality of
Existing Data

14

● Full Disk Encryption (FDE)
○ Everything on disk is encrypted
○ Totally transparent to users
○ Cannot defend against a coercive attacker
○ Examples: VeraCrypt, TrueCrypt, BitLocker

Coercive Attacks

An attacker forces the device owner to disclose the
decryption key

15

Plausibly Deniable Encryption (PDE)
● A crypto primitive designed for mitigating coercive attacks
● Plaintext is encrypted by a true key and a decoy key such that:

○ Decrypted with decoy key
○ Decrypted with true key

● Upon being coerced: disclose decoy key, keep true key
● Existence of hidden sensitive data can be denied reasonably (plausible deniability)

16

Decoy message
True (original) message

A Typical Implementation of PDE

Hidden Volume Technique
● Entire disk is initialized with randomness
● Two volumes: public volume and hidden volume

○ Public volume: encrypted with a decoy key; store public non-sensitive
data

○ Hidden volume: encrypted with true key; store hidden sensitive data
● Disclosing the decoy key upon being coerced by attacker

17

Existing PDE Works for Mobile Devices
PDE
technique

storage layer secure user-
oriented

MobiFlage[Skillen et al., 2013] hidden volume block device no yes yes

MobiHydra[Yu et al., 2014] hidden volume block device no yes yes

MobiPluto[Chang et al., 2018] hidden volume block device no yes yes

DEFY[Peters et al., 2015] steganography flash file system partially yes no

DEFTL[Jia et al., 2017] hidden volume FTL yes no yes

MobiMimosa[Hong et al., 2017] hidden volume block device no yes yes

MobiCeal[Chang et al., 2018] steganography block device no yes yes

MobiGyges[Feng et al., 2020] hidden volume block device no yes yes

INFUSE[Chen et al., 2020] side channel flash file system yes yes no

PEARL[Chen et al., 2021] WOM codes FTL yes no yes

Compatible with
mainstream mobile devices

18

Conclusion

19

● Embedding PDE in block device layer is user-oriented but not secure
○ Unique nature and special functions (e.g., garbage collection and

wear leveling) of flash memory may compromise the deniability
● Embedding PDE in FTL layer is secure but not user-oriented

○ User cannot access to FTL layer
● Designing a file system supporting PDE is not compatible with the

architecture of mainstream mobile devices
○ Most of the mainstream mobile devices use FTL to manage flash

memory
A full-path mobile PDE system which is secure, being compatible with the
storage architecture of mainstream mobile devices, lightweight as well as
user-oriented is missing

We aim to build a full-path mobile PDE system

Design Rationale

20

Technique: hidden volume technique
● Public volume
● Hidden volume
Two modes in user level:
● Public mode: manage public volume

○ Read and write public non-sensitive data
● Hidden mode: manage hidden volume

○ Read and write hidden sensitive data

Q1: Where can we deploy the public/ hidden volume?

Deploy public and hidden volume to the block layer:
● OS can easily manage both volumes using hardware of

the host computing device
● The host computing device’s hardware is more powerful

than the internal hardware of the flash-based block
device

● Easily deploy a file system on top of the public volume
and the hidden volume

21

Q2: How can we mitigate loss of hidden sensitive data?
● Block layer

○ Hide sensitive data at the end of the disk
○ Use a file system which writes data sequentially

from the beginning of the disk (e.g., FAT, exFAT)
● FTL layer

○ There is no data loss in FTL layer since FTL will not
use the pages occupied by the hidden data

● User
○ Should be careful when using the public volume
○ Should know the existence of hidden volume and

pay attention to the disk space used
22

Q3: How can the hidden mode securely communicate with
the FTL to control those flash blocks storing hidden data?

Application layer
(hidden mode)

File system layer

FTL layer

How to communicate?

23

24

Q3: How can the hidden mode securely communicate with the FTL to
control those flash blocks storing hidden data?

Public mode Hidden mode

Monitor I/Os on this special file

Issue I/Os on special file
through regular system callsApplication layer

File system layer

FTL

Special file

Issue I/Os on reserved LBAs

Reserved
LBAs

25

Q3: How can the hidden mode securely communicate with the FTL to
control those flash blocks storing hidden data?

Advantages
● Maintaining the existing system calls
● Maintaining the existing I/O interfaces of the block device

Q4: How can we avoid the deniability compromises when an
adversary can have access to the raw NAND flash?

● Maintain a separate data structure to keep track of pages invalidated by
the hidden mode in FTL, this data structure is invisible to the public mode

● FTL will not move flash blocks to the free block pool in hidden mode
● FTL has separate functions (e.g., garbage collection, wear leveling) for

hidden mode
● When writing a flash page in the hidden mode, we will always commit its

corresponding logical address of the public mode (rather than that of the
hidden mode) to its OOB

26

FTL incorporates separate logic to manage hidden sensitive data to avoid
deniability from being compromised

Design Summary
Flash Translation Layer (mitigate deniability compromise):

● Block allocation
○ Write from the beginning in public volume
○ Write from the end in hidden volume
○ Do not update OOB area of each flash page occupied by hidden data

● Garbage collection & Wear leveling
○ Public mode: follow the original FTL
○ Hidden mode: use separate garbage collection and wear leveling

● Other operations
○ Monitor I/Os from upper layer to securely communicate with

hidden mode
27

Design Summary (cont.)

File System Layer:

● Monitor I/Os from application layer
● Issue I/Os on a few reserved logical addresses to

securely communicate with FTL layer

Application Layer:

● Send different requests by issuing different I/O patterns on special file

Block Layer (improve performance, prevent data loss):

● Both the public and the hidden volume are deployed on the
block layer

● Encryption/decryption are conducted in block layer
● Host computing device is more powerful than flash-based device

28

Implementation
● FTL: Modified OpenNFM[1]

○ Block allocation
○ Garbage collection and wear leveling

● File system layer: Modified exFAT
○ Monitor I/Os from application layer
○ Issue I/Os on a few reserved logical addresses to

securely communicate with FTL layer

[1]Google Code. Opennfm. https://code.google.com/p/opennfm/,

2011
29

● Application layer: Modified Veracrypt
○ Send different requests by issuing different I/O

patterns on special file

Evaluation (cont.)
patterns Public mode (KB/s) Hidden mode (KB/s)

Sequential read 2508 2473

Random read 2174 2030

Sequential write 2599 2372

Random write 1897 1842

Throughput of Veracrypt

patterns Public mode (KB/s) Hidden mode (KB/s)

Sequential read 2460 2424

Random read 2086 2000

Sequential write 2535 948

Random write 1910 839

Throughput of MobiPDE 30

Drawbacks of MobiPDE:

● MobiPDE relies on a strong assumption that filling randomness is a
normal system behavior

● Wearable devices are popular, but MobiPDE is not a perfect design
for wearable devices
○ Filling randomness is a very expensive operation for wearable

devices

31

Can we design a PDE system for wearable devices such that:

● Do not rely on the strong assumption that filling randomness is a
normal system behavior

● Match the hardware characteristics of wearable devices
○ Small size
○ Small screen
○ No keyboard

32

A Plausibly Deniable Encryption System for
Wearable Mobile Devices (MobiWear)

33

Image Steganography
● It is used to hide information in a cover image
● It can be performed in two domains:

○ Spatial domain
○ Transform domain (more computationally intensive)

34

Spatial Domain
The least significant bit (LSB) steganographic embedding technique

● Each pixel can be represented by 4 bytes in an ARGB image
○ R: red
○ G: green
○ B: blue
○ A: transparency

● Secret data are hidden in the least significant bit(s) of each pixel

● The LSB technique has minimal effects on the image quality and is lightweight

35

Spatial Domain (cont.)

“A”: 0 1 0 0 0 0 0 1

11011011

10001011

10101000

11111010

10000010

10101001

Pixel 1 Pixel 2

11001011 10011011A

R

G

B

A

R

G

B

36

Spatial Domain (cont.)

11011011

10001010

10101000

11111010

10000010

10101001

Pixel 1 Pixel 2

11001010 10011010A

R

G

B

A

R

G

B

37

“A”: 0 1 0 0 0 0 0 1

Digital Watermarking

● It is typically used to identify ownership of the copyright
● It includes visible watermarking and invisible watermarking

38

(watermark)

Key Insights

39

● Combine image steganography and watermarking to implement PDE
○ Do not use the hidden volume technique, which 1) requires filling randomness to the

device initially; 2) relies on the assumption that filling randomness is a normal system
behavior

● The sensitive data are denied as the watermarks embedded into the images
○ Upon being coerced, the victim will disclose the decoy key and claim that there is a watermark

(rather than hidden sensitive data) embedded in the cover image

● Rely on embedded sensors to input keys
○ Match the hardware characteristics of wearable devices

Our Design
● Secret data are encrypted with true key and hidden in watermark stego-watermark
● Stego-watermark is encrypted with decoy key and hidden in cover image stego-

image

40

Our Design (cont.)
User authentication:

41

Our Design (cont.)
How to input keys in wearable device:

● Due to the small size of a wearable mobile device, using a keyboard or a
touchscreen to input keys is inconvenient

● We use gyroscope sensor to input the keys
○ Convenient for users to enter the keys (e.g., rotate the wrist)

● How to input keys via gyroscope sensor
○ User rotates the wrist in different directions to enter keys
○ Gyroscope will measure the rotation rate and calculate the rotation degree in

a time interval of each direction

○ A key can be generated by combining degrees of x, y , and z-axis
○ Set a threshold when comparing the keys

42

Evaluation
● Implement MobiWear in an LG G watch

○ 512MB RAM, 4GB storage

○ OS: Android Wear 1.5

● Evaluate whether a user can authenticate successfully via
gyroscope under different thresholds

● Evaluate Peak Signal-to-Noise-Ratio (PSNR) to indicate image
quality

● Evaluate processing time for hiding/extracting sensitive data
43

Evaluation(cont.)

44

5 (4<= x < 6) 25 (24 <= x < 26) 45 (44 <= x < 46) 65 (64 <= x < 66)

Gyroscope-X √ √ √ √

Gyroscope-Y √ √ √ √

Gyroscope-Z √ √ √ √

5.5 (5<= x < 6) 25.5 (25 <= x < 26) 45.5 (45 <= x < 46) 65.5 (65 <= x < 66)

Gyroscope-X √ √ √ √

Gyroscope-Y √ √ √ √

Gyroscope-Z √ √ √ √

Threshold = 0.5°

Threshold = 1°

Evaluation(cont.)

45

5 (3<= x < 7) 25 (23 <= x < 27) 45 (43 <= x < 47) 65 (63 <= x < 67)

Gyroscope-X √ √ √ √

Gyroscope-Y √ √ √ √

Gyroscope-Z √ √ √ √

Threshold = 2°

Evaluation (cont.)
PSNR: Represents the ratio between the maximum possible
power of a signal and the power of the noise. Higher PSNR
value indicates good image quality

m,n: the size of the original image is mxn
I: original image
K: noisy approximation of original image
MAX_I: maximum pixel value of the image

46

Evaluation (cont.)
Length of secret data
(bytes)

20 40 60

PSNR 32.0192 31.9214 31.9048

PSNR of stego-images under different lengths of secret data

Length of secret data
(bytes)

20 40 60

PSNR 34.3125 34.2577 33.2385

PSNR of stego-watermarks under different lengths of secret data

47

Conclusion: Longer secret data will result in lower PSNR values

Evaluation (cont.)

Conclusion:
1. Longer secret data needs more time in hiding/ extracting secret data
2. Extracting the secret data is slower than hiding them

48

Processing time with different secret data lengths

Evaluation (cont.)

Conclusion:
1. The time for hiding/ extracting the secret data slightly increases when the size of
the watermark/cover image increases
2. The time for extracting the secret data is more than that for hiding them 49

Processing time with different size of watermark/cover image

Discussion
● Length of sensitive data which can be hidden

○ Suppose cover image is N pixels, each pixel consists of 4 bytes (ARGB)

○ Maximal size of watermark: N/2 bytes

○ Maximal length of secret data: N/16 bytes

○ Using more LSB to hide sensitive data

● Deniability compromise in memory

○ Secret data may leave traces in memory

○ Power-off the device

○ Utilizing the hardware isolation technique (e.g., ARM TrustZone)
50

Discussion (cont.)
● Mitigating data corruptions

○ LSB technique is vulnerable to image cutting and cropping attack

○ Back up the data periodically

51

● Hiding data in other types of multimedia

○ Video and audio

Ensuring Data Confidentiality in Mobile Devices

52

How to protect confidentiality after the data lifetime
● Secure deletion
● Ensure confidentiality of the data being deleted

How to ensure confidentiality of the sensitive data stored in mobile devices even
when the mobile device owner is captured and coerced to disclose the key?

● Plausibly deniable encryption
● Ensure confidentiality of the data present in the storage media to defend against

coercive attack (confidentiality during the data lifetime)

Secure Deletion

Secure deletion guarantee

● Remove the data to be deleted
● The attacker cannot derive any sensitive information about

the deleted data

53

Traditional Secure Deletion Methods are Not
Sufficient for Mobile Devices

54

● Traditional secure deletion methods (overwrite or encryption) cannot
achieve secure deletion guarantee in flash-based storage devices
○ Unique nature and special functions may cause various duplicates in

flash memory, but traditional secure deletion methods do not handle
them

○ Secure deletion guarantee may be compromised if attacker can have
access to those duplicates

We aim to design a secure deletion scheme which can efficiently remove both
data and the corresponding duplicates across the entire flash

A Secure Deletion Scheme for Flash-based
Devices by Removing Duplicates (RedFlash)

55

Theoretically Analyzing the Existence of Duplicates in Flash
Storage Media

56

● Duplicates created by garbage collection

● Duplicates created by wear leveling

invalid valid invalid valid valid valid empty emptyblock A block B

copycopy

block A: victim block with the largest number of invalid pages
block B: free block

data1 data2 data3 data4 data1 data2 data3

block A block B

copy
data4

block A: a block which has the smallest erase count from blocks being used
block B: a block which has the largest erase count from the free block pool
Duplicates are not deleted immediately due to performance consideration

Theoretically Analyzing the Existence of Duplicates in Flash
Storage Media (cont.)

57

● Duplicates created by bad block management

data1 data2 data3 data4 data1 data2 data3

block A block B

copy
data4

block A: bad block
block B: empty block from free block pool

Duplicates are not deleted immediately due to performance consideration

Experimentally Confirming the Existence of Duplicates

58

Experiment Setup:
● Host: Ubuntu 14
● Simulator: DiskSim 4.0 with SSD Model
● Trace Set: UMass Trace Repository

○ Financial : Financial1 + Financial2
○ WebSearch: WebSearch1 , WebSearch2 , WebSearch3

Trace Set Number Content Number of I/Os

1 Financial + WebSearch1 10,089,261

2 Financial + WebSearch2 13,613,622

3 Financial + WebSearch3 13,295,518

Trace Sets

Experimentally Confirming the Existence of Duplicates (cont.)

59

Experiment Process:
● We run three trace sets separately
● We calculate the total duplicate pages generated during

each run
○ We only calculate the duplicate pages generated by

wear leveling and garbage collection since the simulator
cannot simulate bad block management

Experimentally Confirming the Existence of Duplicates (cont.)

60

Results:

Trace Set Number Total Duplicate Pages Generated Size of Duplicates
(GB)

1 286,393 2.18

2 320,810 2.44

3 286,887 2.19

Simulation results
Conclusion:

● The total size of duplicate data generated during the whole process are
approximately 2 GB

● Different traces will generate different number of duplicate pages. This is because
different traces have different I/O operations, which will lead to different behaviors
in the FTL layer, and eventually affect the number of duplicate pages generated

How to Securely Remove Data as well as the
Corresponding Duplicates

61

Basic solution:
● We immediately delete any duplicates produced by internal management

of flash storage (e.g., garbage collection, wear leveling, and bad block
management)

● Once a deletion request is issued by the user from upper layer, we will
immediately delete the corresponding data node

Disadvantages:
● For those data nodes which have duplicates but have not yet been

deleted, it is unnecessary to remove their duplicates, as the existence of
those duplicates does not “hurt” the secure deletion guarantee

● This solution is expensive and will decrease the performance

● How to efficiently keep track of all duplicates?
● How to efficiently delete data?

○ Delete data in SLC flash
○ Delete data in MLC flash

62

Solution:
When a secure deletion request is issued, we first delete the
targeted data node, and then locate and delete any duplicates
across flash memory associated with this data node

How to Securely Remove Data as well as the
Corresponding Duplicates (cont.)

How to Efficiently Keep Track of All Duplicates?

63

Our solution:
● We propose to “chain” each data node and its associated duplicates together in

the flash memory, generating a duplicate chain

An example of duplicate chain

garbage collection wear leveling

Advantages:

● No searching
○ Searching the duplicates across the entire flash device is expensive
○ May lead to mistakenly delete identical data belonging to another file

● No RAM
○ RAM can be used to track the locations of all duplicates associated with

each data node
○ RAM is volatile and suffers from power-loss
○ The embedded flash device is usually equipped with a limited amount of

RAM

64

Challenge 1: Where can we store the “dup field” in a flash page?
● Each flash page has an OOB area, and only a few bytes of OOB have been

used by the flash controller

Mitigation:We utilize the remaining unused space of the OOB to store the “dup
field”

65

Data area OOB area

Flash page

How to Efficiently Keep Track of All Duplicates? (cont.)

Challenge 2: How can we handle a “broken” duplicate chain?
● A duplicate in a chain may be reclaimed earlier and the entire chain could be

broken
● Updating the chain is infeasible except performing an expensive block erasure

66

An example of broken duplicate chain

Mitigation: When adding a new page to the chain, we redundantly store all the
prior locations in the chain to the “dup field” of this new page

A robust duplicate chain

How to Efficiently Keep Track of All Duplicates? (cont.)

garbage collection wear leveling

Challenge 3: How can we handle the growth of “dup field”?
● The size of the “dup field” may grow over time
● The size of OOB area is limited

67

Mitigation:
● We periodically purged obsolete locations in “dup filed”
● In the worst case, we will use regular space from the page to store it

How to Efficiently Keep Track of All Duplicates? (cont.)

How to Securely Remove Data as well as the
Corresponding Duplicates (cont.)

● How to efficiently keep track of all duplicates?
● How to efficiently delete data?

○ Delete data in SLC flash
○ Delete data in MLC flash

68

How to Efficiently Delete Data?

69

Wei et al. (FAST ’11) proposed scrubbing to delete data from a flash page
without erasing the corresponding block

● Flash allows programming ‘1’ bits to ‘0’ bits
● Programming all ‘1’ bits on a page to ‘0’ bits to delete data

0 1 1 0 0... ...

0 0 0 0 0... ...

scrubbing

page to be deleted

SLC:

How to Efficiently Delete Data? (cont.)

70

● Simply scrubbing the target page cannot work
○ Scrubbing one page will cause corruptions to other pages

since multiple bits share one cell in MLC

MLC:

Solution:
● When secure deletion is triggered, for each target page in the

duplicate chain, the content of its paired-page will be read and
written to a new flash page

● Perform scrubbing on both the target and the paired page

Evaluation and Simulation

71

Real-world implementation and experimental setup:

● Host computing device: Firefly AIO 3399J
○ Six-Core ARM 64-bit processor
○ 4GB RAM
○ Kernel: 4.4.194

● Flash-based device: LPC-H3131
○ ARM9 -32bit ARM926EJ-S
○ 32MB RAM
○ 512MB NAND flash

● Implement RedFlash into OpenNFM

Evaluation and Simulation (cont.)

72

Evaluating lengths of duplicate chains:

Wear leveling threshold Length

10 3

20 3

The length of the longest duplicate chains

Conclusion:
We assess potential lengths of duplicate chains by filling the whole device until the
total data reach to 50 GB with different wear leveling thresholds and collecting length
of the longest chain
The results show that a duplicate chain is usually not too long. This is reasonable, since
long duplicate chains indicate that there are too many invalid pages simultaneously
present in the flash memory, which is usually avoided by a good design of the FTL and
garbage collection

Evaluation and Simulation (cont.)

73

Throughput:

Conclusion:
● RedFlash has little influence on read operations. This is because, RedFlash does not need to

modify any logic relating to reads
● RedFlash has influence on write operations. The write throughput of RedFlash decreases

around 10% compared to that of OpenNFM. This is due to additional operations added to
various functions of FTL, causing additional overhead to writes.

Evaluation and Simulation (cont.)

74

Overhead for secure deletion in SLC flash:

Conclusion:
The time needed for secure deletion is linear to the length of the duplicate chain.
This is reasonable, since RedFlash will remove both the targeted data and the
corresponding duplicates upon secure deletion.

Evaluation and Simulation (cont.)

75

Simulation overhead for secure deletion in MLC flash:
Setup:

● Still rely on LPC-H3131
● Use a delay function to simulate read/program function

Conclusion:
● For MLC, the time needed for securely deleting a data node is linear with the length

of its duplicate chain

Wear Leveling Inequality (WLI) :
● Indicates fraction of erasures that must be reassigned to other blocks in

order to achieve completely even wear
● Small WLI is an indication of good wear leveling

Wear leveling threshold WLI

10 1.87%

20 2.22%

WLI values under different wear leveling thresholds

ei: each block’s erasure count

76

Wear leveling:
Evaluation and Simulation (cont.)

Thanks

77

