
A Simple Mobile Plausibly Deniable System Using Image
Steganography and Secure Hardware

Lichen Xia
University of Delaware

United States
lxia@udel.edu

Jinghui Liao
Wayne State University

United States
jinghui@wayne.edu

Niusen Chen
Michigan Technological University

United States
niusenc@mtu.edu

Bo Chen
Michigan Technological University

United States
bchen@mtu.edu

Weisong Shi
University of Delaware

United States
weisong@udel.edu

ABSTRACT

Traditional encryption methods cannot defend against coercive
attacks in which the adversary captures both the user and the
possessed computing device, and forces the user to disclose the
decryption keys. Plausibly deniable encryption (PDE) has been
designed to defend against this strong coercive attacker. At its core,
PDE allows the victim to plausibly deny the very existence of hidden
sensitive data and the corresponding decryption keys upon being
coerced. Designing an efficient PDE system for a mobile platform,
however, is challenging due to various design constraints bound to
the mobile systems.

Leveraging image steganography and the built-in hardware secu-
rity feature of mobile devices, namely TrustZone, we have designed
a Simple Mobile Plausibly Deniable Encryption (SMPDE) system
which can combat coercive adversaries and, meanwhile, is able
to overcome unique design constraints. In our design, the encod-
ing/decoding process of image steganography is bounded together
with Arm TrustZone. In this manner, the coercive adversary will be
given a decoy key, which can only activate a DUMMY trusted ap-
plication that will instead sanitize the sensitive information stored
hidden in the stego-image upon decoding. On the contrary, the
actual user can be given the true key, which can activate the PDE
trusted application that can really extract the sensitive information
from the stego-image upon decoding. Security analysis and exper-
imental evaluation justify both the security and the efficiency of
our design.

CCS CONCEPTS

• Security and privacy→Mobile platform security.

KEYWORDS

Plausibly Deniable Encryption, Mobile Devices, TrustZone, Image
Steganography

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SaT-CPS ’24, June 21, 2024, Porto, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0555-7/24/06.
https://doi.org/10.1145/3643650.3658607

ACM Reference Format:

Lichen Xia, Jinghui Liao, Niusen Chen, Bo Chen, and Weisong Shi. 2024.
A Simple Mobile Plausibly Deniable System Using Image Steganography
and Secure Hardware. In Proceedings of the 2024 ACM Workshop on Se-
cure and Trustworthy Cyber-Physical Systems (SaT-CPS ’24), June 21, 2024,
Porto, Portugal. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3643650.3658607

1 INTRODUCTION

Mobile devices, such as smartphones, tablets, and wearable devices,
have been increasingly utilized to store and process private or even
mission-critical information. To protect the confidentiality of those
sensitive data, disk encryption is typically incorporated. Traditional
encryption methods, however, convert the protection of the data
to that of the decryption keys. They remain vulnerable to a strong
coercive attack [5], in which the adversary is able to capture the
device as well as the owner of the device, and forces the owner
to disclose the decryption keys. An illustrative example is that a
journalist works in a country of oppression and has captured crim-
inal evidence in his/her smartwatch; later, the journalist is caught
at the border and forced to disclose the encrypted criminal evi-
dence. Plausibly deniable encryption (PDE) has been designed to
combat such coercive attackers. The PDE encrypts the sensitive
data into ciphertext in such a way that, when a true key is used for
decryption, the original sensitive data will be revealed; but, when
a decoy key is used, another non-sensitive data will be revealed.
Upon being coerced, the victim can simply disclose the decoy key,
plausibly denying the existence of both the true key and the sen-
sitive data. Therefore, the PDE essentially hides the sensitive data
with plausible deniability.

Implementing the PDE concept in the mobile setting is not
straightforward, as mobile systems present unique design con-
straints. First, mobile systems typically use flashmemory as external
storage, which exhibits a unique hardware nature leading to unique
attack avenues towards deniability compromises [14, 20]. Second,
the processing of sensitive data typically occurs within an insecure
system environment [23], which will unavoidably leave traces of
sensitive data within the insecure system. Given the variety of mo-
bile operating systems, eliminating those traces poses a significant
challenge. Third, mobile systems typically possess limited compu-
tational and storage capacities, and the incorporation of a PDE

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3643650.3658607
https://doi.org/10.1145/3643650.3658607
https://doi.org/10.1145/3643650.3658607

SaT-CPS ’24, June 21, 2024, Porto, Portugal Lichen Xia, Jinghui Liao, Niusen Chen, Bo Chen, and Weisong Shi

system may considerably increase the system’s overhead, thereby
affecting the system performance as well as the user experience.

This work aims to design a Simple Mobile PDE system, SMPDE,
which can meet the aforementioned design constraints of mobile
systems. At its core, SMPDE “simply” enhances image steganog-
raphy with deniability support, by utilizing ARM TrustZone, a
prevalent hardware security technology found in today’s mobile
computing devices. Image steganography [31] has been broadly
used to embed sensitive data into cover images, generating stego-
imageswhich hide the sensitive data. However, the stego-images are
vulnerable to image steganalysis [21] and, once the image steganal-
ysis has detected the presence of hidden information embedded
within the stego-images, this existence cannot be denied. Therefore,
image steganography itself cannot achieve plausible deniability.
SMPDE incorporates TrustZone with image steganography to pro-
vide this property. Our key idea is that the stego-image will be
encrypted with a key bound to the TrustZone, i.e., only the Trust-
Zone can decrypt this encrypted image. In addition, the TrustZone
maintains two trusted applications (TA), a PDE TA and a DUMMY
TA. The PDE TA will be activated by a true key, while the DUMMY
TA will be activated by a decoy key. When the true key is provided,
the PDE TA will decrypt the stego-image, extract the sensitive data
from the stego-image, and then return the sensitive data. However,
when the decoy key is provided, the DUMMY TA will decrypt the
stego-image, delete the hidden data from the image, and then return
this altered image. Upon being coerced by the adversary, the victim
can simply provide the decoy key, and convince the adversary that
the encrypted image does not hide sensitive information.

By concealing sensitive data within the images that are consid-
ered purely application-layer data, SMPDE can eliminate deniability
concerns associated with the complicated flash memory system.
In addition, the use of TrustZone can isolate the PDE system in a
trusted world, and avoid leaking sensitive data to the untrusted en-
vironment, regardless of the mobile operating systems being used.
Furthermore, the design is “thin”, by merely processing the image
steganography in a TrustZone secure world, which can avoid im-
posing too much additional overhead on the mobile system. Such a
simple PDE system design does come with some limitations which
will be discussed in Sec. 9.
Contributions. Our primary contributions are summarized in the
following:
• We have introduced SMPDE,a simple mobile PDE system
design. SMPDE is able to resolve various design constraints
unique to mobile systems, by smartly integrating image
steganography and Arm TrustZone.
• We have developed a prototype of SMPDE in a Raspberry
Pi 3 Model B+ with ARM TrustZone enabled. Experimental
results justify the efficiency of SMPDE.

2 BACKGROUND

2.1 Image Steganography

Steganography is a technique which can be used to hide sensitive
information within ordinary, non-secret objects like images, au-
dio, videos, texts, etc. in an imperceptible manner [17]. The carrier
objects themselves do not attract suspicion and the hidden informa-
tion is not discernible through direct examination. This provides a

layer of obscurity and deniability for covert communication. Image
steganography specifically refers to the steganography technique
which hides information in image files. It usually operates in two
domains, the spatial domain and the transform domain. A typical
approach in the spatial domain is the least significant bit (LSB)
technique. This approach will embed sensitive data into the least
significant bit of each byte in an RGB image’s pixel channels. Each
pixel in an RGB image includes four channels: alpha (A), red (R),
green (G), and blue (B), with each channel being represented by
one byte. The alpha channel determines the transparency, while the
red, green, and blue channels represent the respective color values.
The least significant bit of each channel has minimal impact on the
overall pixel value, making it an ideal candidate for hiding secret
data without visible modifications to the image. In the transform
domain, the most frequently used methods are the discrete cosine
transform (DCT) [3] and the discrete wavelet transform (DWT) [29].
These techniques transfer the image from the spatial domain to the
frequency domain. Subsequently, the sensitive data are embedded
into the high or middle-frequency components, as those compo-
nents have minimal visual impact on the original image. Compared
to performing steganography in the transform domain, the LSB
technique is much easier to be implemented. Other advanced tech-
niques have been developed recently for image steganography, such
as neural networks [26], generative adversarial networks [25], etc.

Steganography is vulnerable to steganalysis [22], a practice
which aims to defeat steganography by detecting the presence
of hidden data within digital mediums. It involves examining digi-
tal files to detect hidden information embedded within them, via a
variety of techniques from simple statistical analysis [21] to more
complex machine learning algorithms [32].

2.2 ARM TrustZone

ARM TrustZone represents a set of hardware security extensions
introduced by ARM since 2004 to improve security in modern com-
puting systems against an evolving landscape of threats [1]. Trust-
Zone enables the creation of a secure, isolated environment on the
main system-on-chip (SoC) by virtually partitioning resources into
a secure world and a normal world. The normal world corresponds
to the traditional rich operating system (OS) environment used to
support general-purpose applications and functionality. On the con-
trary, the secure world enables the execution of security-sensitive
code in an isolated trusted execution environment (TEE), along
with access to peripherals and memory exclusively assigned to it.
By design, code running in the normal world cannot have access to
resources that belong exclusively to the secure world. This isolation
prevents potentially vulnerable rich OSes and applications from
compromising the security of trusted code running in the TEE. The
normal world can only invoke TEE services through carefully con-
trolled communication channels. Sensitive data processed within
the TEE is also secured in the protected memory reserved for the
secure world.

The TrustZone hardware security feature has seen widespread
adoption across mobile, embedded, and IoT segments, providing
robust security for tasks such as mobile payments, biometric au-
thentication, digital rights management and secure boot [4]. By

A Simple Mobile Plausibly Deniable System Using Image Steganography and Secure Hardware SaT-CPS ’24, June 21, 2024, Porto, Portugal

leveraging an isolated secure environment, TrustZone-based tech-
niques can deliver advanced security properties like confidentiality,
integrity, and anti-cloning assurances.

3 MODELS AND ASSUMPTIONS

Threat model. We consider an adversary which is computationally
bounded, i.e., the adversary cannot have access to unlimited compu-
tational power. The adversary can capture a victim user and his/her
computing device multiple times at different intervals, known as a
multi-snapshot adversary. The adversary can access the device’s
external storage and internal memory and, may coerce the victim
into revealing decryption keys. The access to the external storage
can be extended to various layers of the storage stack, including
the application, the file system, the block device, and the raw flash
memory.
User assumptions. We assume that the user will not intention-
ally disclose the existence of the PDE system or install potentially
adversary-controlled malicious applications. The user is expected
to share only the decoy key with the adversary and should avoid
using publicly accessible images as cover images to conceal sensi-
tive data. In addition, the user will process hidden sensitive data
only in the PDE to address deniability concerns that may arise from
operating on an untrusted system. Furthermore, the user should
not use the PDE system to process sensitive data in the presence of
the adversary. Last, the user should use an image steganography
technique which is sufficiently secure.
Device assumptions. We consider an embedded device which is
equipped with an ARM processor that features TrustZone capability.
The TrustZone is assumed to be secure, and its ability to safeguard
trusted applications (TA) codes is in line with other trusted execu-
tion environment (TEE)-based solutions. Attacks against TrustZone
itself are not the focus of this work. In addition, we assume that
the TrustZone hardware can provide or protect a master key that is
not accessible to the adversary. Furthermore, the operating system,
kernel, and bootloader are assumed to be free of malware. This
is ensured through regular antivirus scans and caution about un-
trusted apps. Lastly, we assume the device is equipped with secure
I/O [19] which can be used to input/output the data that need to be
kept secret from the adversary, e.g., the hidden sensitive data, the
cover images.
Adversary assumptions. The adversary cannot obtain the internal
processing logic of the PDE system through reverse-engineering
the PDE binary file [20]. In addition, the adversary is not able to
physically access the on-chip memory and will cease coercion once
convinced that the decryption key has been disclosed.

4 SMPDE DESIGN

To plausibly deny the existence of sensitive data, SMPDE encodes
the sensitive data into a cover image using image steganography,
generating a stego-image. Subsequently, this stego-image will be en-
crypted in the TrustZone secure world using a key solely accessible
to the TrustZone TAs, and the encrypted stego-image will be stored
in the external storage. Upon retrieval, the encrypted stego-image
is read and can only be decrypted by TrustZone TAs in two cases:
1) If a true key is used, a PDE TA is invoked which will decrypt the
encrypted stego-image, extract the hidden sensitive data from the

stego-image, and return the hidden sensitive data. 2) If a decoy key
is used, a DUMMY TA is invoked which will decrypt the encrypted
stego-image, and return the stego-image after having removing the
hidden sensitive data from it. Therefore, upon being coerced, the
victim can simply disclose the decoy key to avoid being tortured.
Using the decoy key, the adversary cannot identify the existence of
the hidden sensitive data. However, the user can extract the hidden
sensitive data using the true key.

To prevent the adversary from compromising deniability by
playing with TrustZone using the decoy key, we employ a one-
time key (OTK) mechanism for encryption. In other words, the
TrustZone TAs (including both the DUMMY TA and the PDE TA)
always use a different one-time key upon encryption. This can
ensure that the identical plaintext will always be encrypted into
different ciphertext in a different encryption round.

4.1 Overview

An overview of SMPDE is illustrated in Figure 1. There are two
TAs running in the TrustZone secure world: a PDE TA (i.e., a PDE
application running in the trusted OS) that handles PDE operations,
and a DUMMYTA (i.e., a DUMMY application running in the trusted
OS) that processes decoy operations. When a user seeks access to
the PDE system, he/she begins this procedure through a client
entry application running in the normal world, sending data and
commands to the entry application running in the secure world,
which acts as a gateway to the TrustZone TAs. This TrustZone
entry application asks for a key from the user. If the user provides
the true key, the entry application loads the PDE TA, facilitating
the execution of the PDE operations (Sec. 4.2.2). On the contrary, if
the user enters a decoy key, it results in activating the dummy TA
designed to execute operations that appear superficially legitimate
(Sec. 4.2.3). The workflow in Figure 1 is described in the following:

(1) The user enters the non-secure system, initiating the client
entry point application running in the normal world (aka,
rich execution environment, REE) which encompasses mod-
ules for TEE communication.

(2) The non-secure client entry application retrieves files through
the normal world file system (note that for PDE operations,
both the cover image and the sensitive data should be en-
tered from the secure I/O rather than being read from the
REE file system to avoid being compromised).

(3) Commands and files from the user are conveyed to the TEE,
where the TrustZone entry application assesses the user’s
directives to ascertain subsequent handling of the data.

(4) Depending on the input key value, the TrustZone entry appli-
cation will activate either the PDE TA which hides/extracts
the sensitive data, or the dummy TA which executes the
decoy operations.

4.2 Design Details

We present the design details of the SMPDE protocol. A high-level
description of the protocol is shown in Algorithm 1, while each
detailed operation is elaborated in Algorithm 2.

SaT-CPS ’24, June 21, 2024, Porto, Portugal Lichen Xia, Jinghui Liao, Niusen Chen, Bo Chen, and Weisong Shi

TEE OS ComponentsREE OS Components

Message

Client Entry
Application

REE
Communication

Agent

TEE
Communication

Agent

HardwareFlash

Entry
Application

REE File
System

PDE TEE
Application

DUMMY
TEE

Application

1.

2.

2.
3. 3.

3.

4.

4.
1.

Figure 1: An overview of SMPDE. The user operations are

marked with arrows. The blue dash line indicates the dummy

TA triggered by the decoy key.

4.2.1 Notations and Primitives. We denote the secret data to be
hidden as𝑚, the cover image used to hide𝑚 as C, and the stego-
image that contains 𝑚 is denoted as C𝑚 . 𝑀𝐾 is the TrustZone
master key which is secret and only accessible in the TrustZone
secure world. The true key is K𝑡 while the decoy key is K𝑑 .
Key Generation Function (KGF). Upon each encryption, we need
to derive a new one-time key (OTK) from the TrustZone master
key (𝑀𝐾). In addition, this ephemeral key should be able to be
re-generated upon decryption. We define our 𝐾𝐺𝐹 function as
follows:

KGF(𝑀𝐾, 𝑐𝑜𝑛𝑡) → 𝑘 (1)

where 𝑘 is the derived OTK key, and 𝑐𝑜𝑛𝑡 is the contextual infor-
mation which can be extracted from the image file. We use both
the image ID and the timestamp as 𝑐𝑜𝑛𝑡 . Note that the image ID
for the cover image, and the stego-image after embedding sensitive
data, and the stego-image after removing the sensitive data remain
the same. This ID is committed to the metadata area of the im-
age and will not be affected by encryption/decryption. In addition,
each time upon encrypting an image, a new timestamp should be
generated and committed to the metadata area of the image. The
𝐾𝐺𝐹 function can be implemented using crypto primitives like
HMAC-SHA2.
Encryption/Decryption. The encryption should be performed
using a one-time key (OTK). If 𝑚 is the plaintext, 𝑘 is the OTK
key, and the encrypted message is 𝐸 (𝑚), then the 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 can be
represented as:

𝐸 (𝑚) = Encrypt(𝑚,𝑘) (2)

and the 𝐷𝑒𝑐𝑟𝑦𝑝𝑡 function is:

𝑚 = Decrypt(𝐸 (𝑚), 𝑘) (3)

Note that the 𝐸𝑛𝑐𝑟𝑦𝑝𝑡/𝐷𝑒𝑐𝑟𝑦𝑝𝑡 functions can be instantiated using
secure symmetric encryption algorithms like AES.
Sensitive data embedding/extracting. Image steganography in-
volves embedding a hidden message𝑚 within a cover image 𝐶 to
produce a stego-image 𝐶𝑚 . The embedding function, denoted as
𝐸𝑚𝑏𝑒𝑑 , that performs the embedding operations can be represented
as:

Embed(𝐶,𝑚) → 𝐶𝑚 (4)

The extraction function, denoted as 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 , that extracts𝑚 from
𝐶𝑚 can be represented as:

Extract(𝐶𝑚) →𝑚 (5)

Note that the 𝐸𝑚𝑏𝑒𝑑/𝐸𝑥𝑡𝑟𝑎𝑐𝑡 functions can be implemented using
various image steganography techniques and their reverse opera-
tions (Sec. 2.1).

4.2.2 SMPDE Protocol with True KeyK𝑡 . When the user enters the
true key, the entry application loads the PDE TA, allowing the user
to interact with the PDE TA to process hidden sensitive data. As
shown in Algorithm 1, the client entry application accepts the true
key K𝑡 and passes it to the TrustZone to activate the TrustZone
entry application. Then the TrustZone entry application process is
as follows:

Data Encrypting and Saving with K𝑡 . This process is depicted in
Algorithm 2 as function TAUserStore. It is elaborated as follows:

(1) PDE TA Activation: The system first activates the PDE TA
within TrustZone usingK𝑡 . This secure environment within
TrustZone is crucial as it isolates the encryption process
from the rest of the device, mitigating the risks associated
with potential security breaches.

(2) Image Steganography:𝑚 is processed through image steganog-
raphy, by which it is embedded within a cover image𝐶 , gen-
erating a stego-image 𝐶𝑚 . Note that both𝑚 and 𝐶 should
not be obtained from the REE, which is insecure and may
cause deniability compromises. Instead, both𝑚 and𝐶 should
be entered into the secure world from the secure I/O.

(3) OTK Generation: To ensure that the ciphertext is always
different upon a new encryption, SMPDE derives a new OTK
𝑘 from the TrustZone master key𝑀𝐾 , the image ID as well
as a new timestamp.

(4) Encryption: The stego-image 𝐶𝑚 is encrypted using 𝑘 , ob-
taining 𝐸 (𝐶𝑚). This encryption ensures that even if the data
is accessed, its true nature remains protected without access-
ing the master key. The data can only be decrypted by PDE
TA or DUMMY TA, not even by the device owner.

(5) Storage: The storage of the encrypted data 𝐸 (𝐶𝑚) is pro-
cessed by the REE file system. As the data are encrypted, the
non-secure system cannot know their content.

Data Decrypting and Retrieval with K𝑡 . Retrieving the sensitive
data involves a reverse process. This process is depicted in Algo-
rithm 2 as a function TAUserRetrieve. It is elaborated as follows:

(1) Decryption: PDE TA reads the encrypted data 𝐸 (𝐶𝑚) from
the non-secure file system. It then re-generates the OTK 𝑘 .
Last, it decrypts the data 𝐸 (𝐶𝑚) using 𝑘 , obtaining 𝐶𝑚 with.

(2) Sensitive data extraction: Once decrypted, the PDE TA
extracts the sensitive data 𝑚 from 𝐶𝑚 using the reverse
operation of image steganography, and returns the sensitive
data𝑚 to the user.

4.2.3 SMPDE Protocol with Decoy Key K𝑑 . When the user en-
ters the decoy key K𝑑 , the TruztZone entry application loads the
DUMMY TA, allowing the user to interact with the DUMMY TA
to process input images, triggering a different set of procedures to
maintain the plausible deniability of the system.

Data Encrypting and Saving with K𝑑 . The protocol’s ingenious
design ensures that the use of K𝑑 does not reveal the existence
of sensitive data. This process is represented in Algorithm 2 as a
function TAAversaryStore. The function is elaborated as follows:

A Simple Mobile Plausibly Deniable System Using Image Steganography and Secure Hardware SaT-CPS ’24, June 21, 2024, Porto, Portugal

Algorithm 1 The SMPDE Protocol for User and Adversary Operations.

Require: User input key K𝑖 where 𝑖 ∈ {𝑡, 𝑑}
Ensure: Execution of the appropriate operations based on K𝑖
1: function ClientEntryApplication
2: K𝑖 ← ReceiveInputKey ⊲ Receive key from the user
3: Invoke the TrustZone entry application ⊲ Enter the TrustZone by calling the entry application
4: if K𝑖 = K𝑡 then ⊲ Check if input key is the true key ⊲ Call methods designed for the legitimate user
5: PDE-TA(UserOperations) where𝑈𝑠𝑒𝑟𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ∈ {𝑇𝐴𝑈𝑠𝑒𝑟𝑆𝑡𝑜𝑟𝑒,𝑇𝐴𝑈𝑠𝑒𝑟𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒}
6: else ⊲ Call methods designed for the adversary
7: DUMMY-TA(AdversaryOperations) where 𝐴𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑦𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ∈ {𝑇𝐴𝐴𝑣𝑒𝑟𝑠𝑎𝑟𝑦𝑆𝑡𝑜𝑟𝑒,𝑇𝐴𝐴𝑣𝑒𝑟𝑠𝑎𝑟𝑦𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒}
8: end if

9: end function

Algorithm 2 Detailed Operations in SMPDE.

1: function GenerateOTK(𝑀𝐾 , image)
2: 𝑘 ← KGF(𝑀𝐾, 𝑖𝑚𝑎𝑔𝑒 𝐼𝐷 | |𝑡𝑖𝑚𝑒 𝑠𝑡𝑎𝑚𝑝)
3: return 𝑘

4: end function

5: function TAUserStore(𝑚, 𝐶 ,𝑀𝐾) ⊲ PDE-TA
6: 𝑂𝑏𝑡𝑎𝑖𝑛 𝑠𝑦𝑠𝑡𝑒𝑚 𝑡𝑖𝑚𝑒, 𝑢𝑝𝑑𝑎𝑡𝑒 𝐶 𝑤𝑖𝑡ℎ 𝑛𝑒𝑤 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝

7: 𝑘 ← GenerateOTK(𝑀𝐾,𝐶) ⊲ Generate the OTK key
8: 𝐶𝑚 ← Embed(𝐶,𝑚) ⊲ Embed sensitive data
9: 𝐸 (𝐶𝑚) ← Encrypt(𝐶𝑚, 𝑘) ⊲ Encrypt stego-image for user
10: 𝑆𝑡𝑜𝑟𝑒 𝐸 (𝐶𝑚) 𝑡𝑜 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑣𝑖𝑎 𝑅𝐸𝐸
11: end function

12: function TAUserRetrieve(𝑀𝐾) ⊲ PDE-TA
13: 𝑅𝑒𝑎𝑑 𝐸 (𝐶𝑚) 𝑓 𝑟𝑜𝑚 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑣𝑖𝑎 𝑅𝐸𝐸

14: 𝑘 ← GenerateOTK(𝑀𝐾, 𝐸 (𝐶𝑚)) ⊲ Re-generate OTK key
15: 𝐶𝑚 ← Decrypt(𝐸 (𝐶𝑚), 𝑘) ⊲ Decrypt stego-image
16: 𝑚 ← Extract(𝐶𝑚) ⊲ Extract sensitive data
17: return𝑚

18: end function

19: function TAAversaryStore(𝐶′,𝑀𝐾) ⊲ DUMMY-TA
20: 𝑂𝑏𝑡𝑎𝑖𝑛 𝑠𝑦𝑠𝑡𝑒𝑚 𝑡𝑖𝑚𝑒, 𝑢𝑝𝑑𝑎𝑡𝑒 𝐶′ 𝑤𝑖𝑡ℎ 𝑛𝑒𝑤 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝

21: 𝑘 ← GenerateOTK(𝑀𝐾,𝐶′) ⊲ Generate the OTK key
22: 𝐸 (𝐶′) ← Encrypt(𝐶′, 𝑘) ⊲ Directly encrypt adversary’s

image
23: 𝑆𝑡𝑜𝑟𝑒 𝐸 (𝐶′) 𝑡𝑜 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑣𝑖𝑎 𝑅𝐸𝐸
24: end function

25: function TAAversaryRetrieve(𝑀𝐾) ⊲ DUMMY-TA
26: 𝑅𝑒𝑎𝑑 𝐸 (𝐶𝑚) 𝑓 𝑟𝑜𝑚 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑣𝑖𝑎 𝑅𝐸𝐸

27: 𝑘 ← GenerateOTK(𝑀𝐾, 𝐸 (𝐶𝑚)) ⊲ Re-generate OTK key
28: 𝐶𝑚 ← Decrypt(𝐸 (𝐶𝑚), 𝑘) ⊲ Decrypt image for adversary
29: 𝐶′ ← 𝑠𝑎𝑛𝑖𝑡𝑖𝑧𝑒 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑎𝑡𝑎 𝑓 𝑟𝑜𝑚 𝐶𝑚
30: return 𝐶′ ⊲ Return sanitized image to adversary
31: end function

(1) DUMMY TA Activation: TrustZone’s secure environment
is also utilized, activated withK𝑑 . This DUMMY TA ensures
that the operations carried out do not compromise the hidden
data.

(2) OTK Generation: The DUMMY TA generates a new OTK
key 𝑘 from the TrustZone master key𝑀𝐾 , the image ID as
well as a new time stamp.

(3) Encryption: The input image 𝐶′ is then encrypted using 𝑘 ,
obtaining 𝐸 (𝐶′).

(4) Storage: The storage of the encrypted data 𝐸 (𝐶′) is pro-
cessed by the REE file system.

Data Decrypting and Retrieval with K𝑑 . The protocol’s design
ensures that both genuine and decoy operations are indistinguish-
able from each other from external observers, thus preserving the
user’s ability to deny the existence of sensitive data. This process
is depicted in Algorithm 2 as a function TAAversaryRetrieve. It
is elaborated as follows:

(1) Decryption: The DUMMY TA receives the encrypted data
𝐸 (𝐶𝑚) from the REE file system. It first re-generates the OTK
𝑘 . It then decrypts the 𝐸 (𝐶𝑚), obtaining 𝐶𝑚 using 𝑘 .

(2) Sanitizing sensitive data: Once decrypted, the DUMMY
TA performs a reverse operation of image steganography,
locating𝑚 from 𝐶𝑚 and replacing𝑚 with randomness, gen-
erating 𝐶′. This is essentially equal to sanitizing𝑚 from the
stego-image before returning it to the adversary.

5 SECURITY ANALYSIS

SMPDE achieves plausible deniability by creating two TAs in Trust-
Zone, a PDE TA and a DUMMY TA, and hiding sensitive data
into a cover image through image steganography and TrustZone-
bounded encryption. Note that having TAs running itself does not
raise any deniability issues as TrustZone TAs are popular for secure
computing applications in today’s mobile devices. The encrypted
stego-image that hides sensitive data cannot be differentiated from
a random image that does not contain sensitive data without decryp-
tion. We show in the following that SMPDE can ensure plausible
deniability.

When the adversary captures both the device and the device
owner, it coerces the owner and the owner will disclose the decoy
key to avoid further coercion. We consider three cases in which the
adversary tries to compromise PDE:
Case 1: The adversary performs forensic analysis over the memory
and the external storage. For the memory, the PDE operations are
performed in the TrustZone secure world and, all the sensitive data
stay isolated in a secure memory region which is inaccessible to
the untrusted operating system; in addition, the sensitive data will

SaT-CPS ’24, June 21, 2024, Porto, Portugal Lichen Xia, Jinghui Liao, Niusen Chen, Bo Chen, and Weisong Shi

be entered into the system through secure I/O and, their traces
will not appear in the untrusted operating system; furthermore, the
adversary is assumed to be unable to physically access the on-chip
memory of the ARM chip (Section 3). Therefore, we can conclude
that the adversary is not able to obtain any footprint of the sensitive
data in the system memory over time. For the external storage, the
stego-images are stored encrypted in the external storage and, the
adversary could not tell whether a stego-image contains sensitive
data or not before decrypting it. However, the decryption would
not be possible without the help of TrustZone as the encryption is
bound to the TrustZone (this will be further discussed in Case 2).
In conclusion, the adversary cannot compromise the deniability by
simply utilizing the multiple snapshots obtained from the memory
and the external storage.

Case 2: The adversary obtains the decoy key after coercing the
victim and invokes the DUMMY TA, and through the DUMMY
TA, it decrypts the encrypted stego-image 𝐸 (𝐶𝑚) and performs
steganalysis over it, hoping to compromise deniability. However, the
internal processing of the DUMMY TA is unknown to the adversary
and, taking advantage of this, the DUMMY TA decrypts 𝐸 (𝐶𝑚)
correctly; however, before directly returning the plaintext 𝐶𝑚 to
the adversary, it will first remove the sensitive data 𝑚 from 𝐶𝑚 ,
generating 𝐶′ which is then returned to the adversary. Clearly, the
adversary is not able to learn anything about𝑚 from𝐶′. In addition,
the adversary will not be able to notice that𝐶′ is a modified version
of the original cover image𝐶 , considering that 1) the adversary does
not have access to 𝐶 , and 2) the size of 𝐶′ is equal to that of 𝐶 and
𝐸 (𝐶𝑚), and 3) the image steganography technique is sufficiently
secure.

Case 3: The adversary plays with the TrustZone. Specifically, the
adversary obtains the decoy key and activates the DUMMY TA to
decrypt the encrypted stego-image 𝐸 (𝐶𝑚). After having obtained
the plaintext 𝐶′, it encrypts 𝐶′ by activating the TrustZone again
using the decoy key, obtaining the ciphertext 𝐸 (𝐶′), and compares
𝐸 (𝐶′) with 𝐸 (𝐶𝑚). This however, will not lead to the compromise
of deniability, because: 1) both the PDE TA and the DUMMY TA in
SMPDE adopt an “ephemeral” encryption mechanism by which the
identical plaintext will always be encrypted into different ciphertext
when a new encryption process is invoked, and 2) the size of 𝐸 (𝐶′)
is always equal to the size of 𝐶′ which is equal to that of 𝐶 and
𝐸 (𝐶𝑚).

6 IMPLEMENTATION

SMPDE was implemented using OP-TEE (Open Portable Trusted
Execution Environment) [27], an open-source TEE that utilizes
ARM TrustZone technology.
Encryption and Image Steganography. For encryption, we uti-
lize AES symmetric encryption in CBCmode, with a 256-bit key. For
image steganography, we use LSB1, a lightweight image steganog-
raphy technique.
OP-TEE TAs and PTAs. Within the OP-TEE architecture, pro-
grams are segregated into two privilege layers: the user level, where
trusted applications (TAs) function, and the kernel level, which is
1We used LSB for image steganography for a proof-of-concept implementation. LSB,
though simple and efficient, is not a strong image steganography technique and may
be vulnerable to image steganalysis [34].

designated for pseudo-trusted applications (PTAs). The PDE ingress
program is structured as a TA operating at the user level, while its
core logic is implemented as a PTA. Additionally, a dummy PTA
is established to handle the logic related to dummy keys. TAs are
typically called by client applications in the normal world through
OP-TEE’s client API (libteec), starting with TEEC_OpenSession
to initiate a session, followed by TEEC_InvokeCommand to transmit
commands. PTAs, being static components within the kernel, can
be invoked by a TA or another PTA using TEE_InvokeTACommand.
Encryption and decryption play a crucial role in data writing or
reading, and OP-TEE provides a comprehensive range of crypto-
graphic APIs to support these operations. This set of APIs is flexible
enough to accommodate the AES encryption algorithm.

To support the PDE logic layer, we adapt the OP-TEE OS to
enable the execution of PDE-related operations within TrustZone
TAs. We introduce new secure system calls (syscalls) for creating,
accessing, and managing PDE-protected data. These calls establish
a hidden mode within the TEE, allowing users to securely store and
process sensitive data without leaving traces in the REE. Moreover,
we implement a two-layer approach [24] within the TEE, compris-
ing a dummy layer as an entry point to the actual PDE layer. This
design enhances usability and user experience while maintaining
security. The dummy layer enables users to input decoy passwords,
granting access to non-sensitive data and concealing the actual
PDE-protected data. In the SMPDE system, the encryption of TAs is
accomplished using OP-TEE’s REE filesystem TA mechanism. Each
TA is represented by an ELF file that is signed and, if needed, en-
crypted. PTAs undergo a similar encryption and decryption process
as TAs. However, given their closer integration with core services,
the encryption and decryption mechanisms for PTAs may require
additional security measures. However, the fundamental approach
remains consistent with that of TAs.

7 EXPERIMENTAL EVALUATION

7.1 Testbed

A proof of concept prototype of SMPDE was implemented and
deployed on a Raspberry Pi 3 Model B development board. This
embedded board has a Broadcom BCM2837 System-on-Chip (SoC)
featuring a 64-bit CPU architecture, which is equipped with a 1.2
GHz quad-core ARM Cortex A53 (ARMv8) processor. The SoC has
the built-in support for ARM TrustZone. The OP-TEE we used is
version 3.20, and the non-secure software realm is anchored in
the Linux kernel with version rpi3-optee-5.17 [16]. The board is
equipped with 1GB LPDDR2 SDRAM. For external storage, we used
a 32GB SanDisk high capacity micro SD Card.

7.2 Performance

The performance of SMPDE is shown in Table 1, which captures
the computational time needed for hiding/extracting sensitive data
into/from the cover image, encrypting/decrypting the cover image,
and reading/writing the SD card. The results were measured by
varying the sizes of both the cover image and the hidden sensitive
data.
Hiding and Extracting Sensitive Data. The time needed for
hiding sensitive data in cover images ranges from 13,882 𝜇s for
a 192x144 cover image to 704,463 𝜇s for a 640x360 cover image.

A Simple Mobile Plausibly Deniable System Using Image Steganography and Secure Hardware SaT-CPS ’24, June 21, 2024, Porto, Portugal

Table 1: Performance of SMPDE in various operations when the sizes of cover images vary. The size of the hidden sensitive

data is
1
8 of that of the cover image.

192x144 256x144 320x240 352x240 352x288 512x288 480x360 568x320 640x360

Hide sensitive data (𝜇s) 13,882 39,350 73,744 138,043 208,627 305,947 416,452 556,141 704,463
Extract sensitive data (𝜇s) 20,869 53,715 96,994 172,665 255,397 368,100 491,867 650,493 819,026
Encrypt/Decrypt cover image (𝜇s) 18,258 35,093 70,208 108,703 154,987 214,518 293,526 376,431 481,618
Write stego-image to SD (𝜇s) 24,782 30,987 59,914 65,896 77,867 99,935 131,240 138,401 173,842
Read stego-image from SD (𝜇s) 30,865 38,276 70,142 76,225 89,754 113,045 146,954 153,858 192,718

Similarly, the time for extracting sensitive data from cover images
shows an increase from 20,869 𝜇s to 819,026 𝜇s when the cover
image sizes vary. Note that the size of the sensitive data is always 1

8
of that of the cover image, and therefore, when the size of the cover
image increases, the size of the sensitive data will also increase. To
hide/extract sensitive data, the LSB technique needs to operate over
a certain number of bytes in the cover image, which is linear to
the size of the sensitive data. Therefore, the computation needed is
approximately linear to the size of the hidden sensitive data, which
is linear to the size of the cover image.
Encrypting/Decrypting Stego-images. The time needed for en-
crypting/decrypting the stego-image increases when the size of
the cover image increases, starting at 18,258 𝜇s and reaching up to
481,618 𝜇s. Note that the size of the stego-image is always equal
to that of the corresponding cover image. The encryption/decryp-
tion time exhibits an approximately (but not exactly) linear growth
when the image size grows, which is consistent with the linear
complexity of the AES CBC mode.
SD Card Read/Write. For the SD Write operation, we observe that
the time needed increases from 24,782 𝜇s for the smallest image
to 173,842 𝜇s for the largest one, growing approximately linearly.
The SD Read operation also exhibits a similar pattern, ranging from
30,865 𝜇s to 192,718 𝜇s. It is reasonable that handling a larger image
via the SD card takes more time because it requires proportionally
more resources and involves retrieving or storing proportionally
more data.

8 RELATEDWORK

The application-layer PDE systems. MobiWear [13] hides sen-
sitive data in images using steganography and, once the victim is
coerced, the hidden information is denied as the watermark embed-
ded in the image, though the actual sensitive data is hidden inside
the watermark. However, MobiWear is vulnerable to steganalysis
on the watermark images. In addition, traces of hidden data will
be present in the insecure memory and may be observed by the
adversary. HiPDS [12] is another application-layer PDE system
which encoded the sensitive data into the non-sensitive cover data
by leveraging Chameleon hash. However, the Chameleon hash is
expensive, leading to a significant decrease in throughput [12] and
is hence not suitable to be used for low-power mobile computing
devices. In contrast, SMPDE is a lightweight PDE system design
that fits resource-limited mobile systems and can resist again ste-
ganalysis on both external storage and memory.
The block-layer PDE systems. Multiple existing PDE systems [6,
7, 9, 18, 30, 33] have integrated hidden volumes at the block layer
and, the hidden volumes can be used to store hidden sensitive data.
A common idea is, that each hidden volume is encrypted by a true

key and placed stealthily at a secret offset of a public volume en-
crypted by a decoy key. Upon being coerced, the victim can disclose
the decoy key. The adversary can then decrypt the public volume
but remains unaware of the hidden volumes concealed among the
randomness filled initially. All of them suffer from two limitations.
First, they suffer from deniability compromises on the lower-layer
flash memory [14]. Second, they suffer from deniability compro-
mises in the insecure memory. SMPDE can address both limitations
by 1) hiding sensitive data in the images of the application layer
(this will not create any traces at the underlying flash memory),
and 2) utilizing TrustZone to protect hidden sensitive data from
being leaked to the insecure memory.
The flash memory-layer PDE systems. There were a few mobile
PDE systems designed to accommodate the unique nature of flash
memory hardware equipped with mobile devices. They have been
integrated into either the flash translation layer (FTL) [11, 15, 20, 23,
24] or the flash-specific file systems [10, 28]. A major limitation for
all of them is that the PDE functionality is strongly coupled with
the underlying flash memory systems, making them hard to deploy.
On the contrary, SMPDE is an application-layer PDE system which
does not require modifying the underlying flash memory systems
and can be deployed easily.

9 DISCUSSION

Applications of SMPDE in the CPS/IoT realm. The amount of
critical and sensitive data being created, stored, and processed by
cyber-physical systems (CPS) and the Internet of Things (IoT) has
been rising. Protecting the confidentiality of such data has become
of utmost importance, particularly in situations involving wearable
gadgets and other IoT devices. These gadgets frequently manage
sensitive data that, if breached, could have significant repercussions
on user privacy and system stability. Nowadays, the adversary has
become extremely sophisticated and may employ various methods
to breach the confidentiality of critical data within the CPS/IoT
environments (e.g., the mission-critical data from the smart grids,
industry control systems, and autopilot systems, the personally pri-
vate data from the healthcare monitoring systems, home robotics
systems, and self-driving cars). Such methods include rubber-hose
cryptanalysis [2] or other strategies that could potentially put the
lives of victims at risk. Different from traditional encryption meth-
ods, SMPDE could add an extra layer of protection against coercive
threats, protecting the data in critical CPS/IoT scenarios.
About embedding/extracting sensitive data. To facilitate ex-
traction of the hidden sensitive data, the locations of the hidden
data in the cover image should be kept track of. This can be realized
by adding to the cover image “extra information” which can keep
track of the embedding locations. This “extra information” should

SaT-CPS ’24, June 21, 2024, Porto, Portugal Lichen Xia, Jinghui Liao, Niusen Chen, Bo Chen, and Weisong Shi

be also sanitized after the DUMMY TA decrypts the stego-image
and sanitizes the hidden data.
Extended memory protection with Secure IO. The sensitive
data will be processed within TrustZone so that the adversary
cannot have access to it in the securememory. However, the transfer
of data from an unsecured system to TrustZone can result in traces
of sensitive data being left in the insecure memory which will
lead to the deniability compromise. To mitigate this issue, secure
I/O [19] needs to be leveraged to protect peripherals that are used to
input/output sensitive data (including cover images which need to
be kept secret from the adversaries for deniability assurance). When
the peripherals are configured to operate in the secure mode, both
the peripherals and their DMZ gain the protection of TrustZone, and
any input received by the peripherals is sent directly to TrustZone.
We will further investigate the integration of secure I/O and SMPDE
in our future work.
Limitations of SMPDE. SMPDE is a “simple” PDE system design
at the cost of a few accompanied limitations. First, it relies on the
assumption that the adversary does not have access to the original
cover images. Otherwise, the adversary can simply compare the
original cover images with the images output by the DUMMY TA
and notice that “some special data” have been removed from the
cover images, compromising the deniability. Second, each image
can only conceal a limited amount of sensitive data as otherwise,
the image quality of the cover image will be affected significantly,
raising a red flag. For example, for LSB, every 8 bits can be used
to hide at most 1 bit, and a 1MB image can at most hide 0.12MB
sensitive data. The rate is much lower than the hidden volume
technique [8, 20] which can hide as much as 0.5MB per 1MB of
public data.

10 CONCLUSION

In this work, we have developed SMPDE, a simple PDE system de-
sign tailored for mobile hardware. By integrating ARM TrustZone
and image steganography, SMPDE can resist a coercive adversary
which can have access to both the external storage and the mem-
ory of a victim device at multiple checkpoints over time. Security
analysis and experimental evaluation using a real-world prototype
implementation demonstrate that SMPDE can achieve plausible
deniability while imposing a reasonable overhead on mobile plat-
forms.

ACKNOWLEDGMENTS

This work was supported by US National Science Foundation un-
der grant number CNS-2313139, CNS-1928331 and CNS-1928349.
Niusen Chen and Bo Chen were also supported by US National
Science Foundation under grant number CNS-2225424.

REFERENCES

[1] 2009. ARM TrustZone Technology. https://developer.arm.com/ip-products/
security-ip/trustzone

[2] 2022. The Best Defense Against Rubber-Hose Cryptanalysis.
https://pluralistic.net/2022/03/27/the-best-defense-against-rubber-hose-
cryptanalysis/

[3] Nasir Ahmed, T_ Natarajan, and Kamisetty R Rao. 1974. Discrete cosine transform.
IEEE transactions on Computers 100, 1 (1974), 90–93.

[4] ARM. 2023. Silicon IP Security. https://www.arm.com/products/silicon-ip-
security. Accessed: 2024-02-25.

[5] Hristo Bojinov, Daniel Sanchez, Paul Reber, Dan Boneh, and Patrick Lincoln.
2014. Neuroscience meets cryptography: Crypto primitives secure against rubber
hose attacks. Commun. ACM 57, 5 (2014), 110–118.

[6] Bing Chang, Yao Cheng, Bo Chen, Fengwei Zhang, Wen-Tao Zhu, Yingjiu Li, and
Zhan Wang. 2018. User-friendly deniable storage for mobile devices. computers
& security 72 (2018), 163–174.

[7] Bing Chang, Zhan Wang, Bo Chen, and Fengwei Zhang. 2015. Mobipluto: File
system friendly deniable storage for mobile devices. In Proceedings of the 31st
Annual Computer Security Applications Conference. ACM, 381–390.

[8] Bing Chang, Zhan Wang, Bo Chen, and Fengwei Zhang. 2015. Mobipluto: File
system friendly deniable storage for mobile devices. In Proceedings of the 31st
annual computer security applications conference. 381–390.

[9] Bing Chang, Fengwei Zhang, Bo Chen, Yingjiu Li, Wen-Tao Zhu, Yangguang Tian,
Zhan Wang, and Albert Ching. 2018. Mobiceal: Towards secure and practical
plausibly deniable encryption on mobile devices. In 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). IEEE, 454–
465.

[10] Chen Chen, Anrin Chakraborti, and Radu Sion. 2020. INFUSE: Invisible plausibly-
deniable file system for NAND flash. Proc. Priv. Enhancing Technol. 2020, 4 (2020),
239–254.

[11] Chen Chen, Anrin Chakraborti, and Radu Sion. 2021. PEARL: Plausibly Deni-
able Flash Translation Layer using WOM coding. In The 30th Usenix Security
Symposium.

[12] Niusen Chen and Bo Chen. 2023. HiPDS: A Storage Hardware-independent
Plausibly Deniable Storage System. IEEE Transactions on Information Forensics
and Security (2023).

[13] Niusen Chen, Bo Chen, and Weisong Shi. 2021. MobiWear: A Plausibly Deniable
Encryption System for Wearable Mobile Devices. In EAI International Conference
on Applied Cryptography in Computer and Communications. Springer, 138–154.

[14] Niusen Chen, Bo Chen, and Weisong Shi. 2022. The block-based mobile pde
systems are not secure-experimental attacks. In EAI International Conference on
Applied Cryptography in Computer and Communications. Springer, 139–152.

[15] Niusen Chen, Bo Chen, and Weisong Shi. 2022. A Cross-layer Plausibly Deniable
Encryption System for Mobile Devices. In International Conference on Security
and Privacy in Communication Systems. Springer, 150–169.

[16] OP-TEE Contributors. 2021. OP-TEE/manifest. https://github.com/OP-TEE/
manifest GitHub repository.

[17] John Doe and Jane Smith. 2021. Fundamentals of Steganography: Hiding Infor-
mation in Plain Sight. Journal of Cybersecurity and Digital Forensics 15, 3 (2021),
105–120. https://doi.org/10.1000/jcdf .2021.15.3.105

[18] Wendi Feng, Chuanchang Liu, Zehua Guo, Thar Baker, Gang Wang, Meng Wang,
Bo Cheng, and Junliang Chen. 2020. MobiGyges: A mobile hidden volume for
preventing data loss, improving storage utilization, and avoiding device reboot.
Future Generation Computer Systems (2020).

[19] Seung-Kyun Han and Jinsoo Jang. 2023. MyTEE: Own the Trusted Execution
Environment on Embedded Devices.. In NDSS.

[20] Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. 2017. Deftl: Implementing plausibly
deniable encryption in flash translation layer. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. 2217–2229.

[21] Konstantinos Karampidis, Ergina Kavallieratou, and Giorgos Papadourakis. 2018.
A review of image steganalysis techniques for digital forensics. Journal of infor-
mation security and applications 40 (2018), 217–235.

[22] Mohammad Khan and Linda White. 2019. Steganalysis Techniques: Detecting
the Undetectable. Computer Security Review 14, 2 (2019), 89–102. https://doi.org/
10.1000/csr.2019.14.2.89

[23] Jinghui Liao, Bo Chen, and Weisong Shi. 2021. TrustZone enhanced plausibly
deniable encryption system for mobile devices. In 2021 IEEE/ACM Symposium on
Edge Computing (SEC). IEEE, 441–447.

[24] Jinghui Liao, Niusen Chen, Lichen Xia, Bo Chen, and Weisong Shi. 2024. FSPDE:
A Full Stack Plausibly Deniable Encryption System for Mobile Devices. In 2024
ACM Conference on Data and Application Security and Privacy (CODASPY). ACM.

[25] Jia Liu, Yan Ke, Zhuo Zhang, Yu Lei, Jun Li, Minqing Zhang, and Xiaoyuan Yang.
2020. Recent advances of image steganography with generative adversarial
networks. IEEE Access 8 (2020), 60575–60597.

[26] Shao-Ping Lu, Rong Wang, Tao Zhong, and Paul L Rosin. 2021. Large-capacity
image steganography based on invertible neural networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 10816–10825.

[27] OP-TEE. 2019. Open Portable Trusted Execution Environment. https://www.op-
tee.org/ (2019).

[28] Timothy M Peters, Mark A Gondree, and Zachary NJ Peterson. 2015. DEFY: A
deniable, encrypted file system for log-structured storage. (2015).

[29] Mark J Shensa et al. 1992. The discrete wavelet transform: wedding the a trous
and Mallat algorithms. IEEE Transactions on signal processing 40, 10 (1992),
2464–2482.

[30] Adam Skillen and MohammadMannan. 2013. On Implementing Deniable Storage
Encryption for Mobile Devices. In 20th Annual Network and Distributed System
Security Symposium, NDSS 2013, San Diego, California, USA, February 24-27.

[31] Nandhini Subramanian, Omar Elharrouss, Somaya Al-Maadeed, and Ahmed
Bouridane. 2021. Image steganography: A review of the recent advances. IEEE

https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://pluralistic.net/2022/03/27/the-best-defense-against-rubber-hose-cryptanalysis/
https://pluralistic.net/2022/03/27/the-best-defense-against-rubber-hose-cryptanalysis/
https://www.arm.com/products/silicon-ip-security
https://www.arm.com/products/silicon-ip-security
https://github.com/OP-TEE/manifest
https://github.com/OP-TEE/manifest
https://doi.org/10.1000/jcdf.2021.15.3.105
https://doi.org/10.1000/csr.2019.14.2.89
https://doi.org/10.1000/csr.2019.14.2.89
https://www.op-tee.org/
https://www.op-tee.org/

A Simple Mobile Plausibly Deniable System Using Image Steganography and Secure Hardware SaT-CPS ’24, June 21, 2024, Porto, Portugal

access 9 (2021), 23409–23423.
[32] Weike You, Hong Zhang, and Xianfeng Zhao. 2020. A Siamese CNN for image

steganalysis. IEEE Transactions on Information Forensics and Security 16 (2020),
291–306.

[33] Xingjie Yu, Bo Chen, Zhan Wang, Bing Chang, Wen Tao Zhu, and Jiwu Jing. 2014.
Mobihydra: Pragmatic and multi-level plausibly deniable encryption storage

for mobile devices. In International conference on information security. Springer,
555–567.

[34] Tao Zhang and Xijian Ping. 2003. A new approach to reliable detection of LSB
steganography in natural images. Signal processing 83, 10 (2003), 2085–2093.

	Abstract
	1 Introduction
	2 Background
	2.1 Image Steganography
	2.2 ARM TrustZone

	3 Models and Assumptions
	4 SMPDE Design
	4.1 Overview
	4.2 Design Details

	5 Security Analysis
	6 Implementation
	7 Experimental Evaluation
	7.1 Testbed
	7.2 Performance

	8 Related Work
	9 Discussion
	10 Conclusion
	Acknowledgments
	References

