CS5740/4740 Spring 2022: Special Topic on Data Security (2)

Plausibly Deniable Encryption Systems for Mobile Devices

Bo Chen
Department of Computer Science
Michigan Technological University

https://cs.mtu.edu/~bchen
https://snp.cs.mtu.edu
bchen@mtu.edu
Course Evaluation

• Find a few mins to fill up your course evaluation by the weekend
Mobile Devices are Turning to Mainstream Computing Devices

Number of smartphone users worldwide from 2014 to 2020 (in billions)

Number of tablet users worldwide from 2013 to 2021 (in billions)
Mobile Devices are Turning to Mainstream Computing Devices (cont.)

Number of connected wearable devices worldwide from 2016 to 2021 (in millions)
Mobile Devices Are Increasingly Used for Critical Applications

- Mobile devices are increasingly used to handle sensitive data
 - Online banking
 - Ecommerce
 - Cryptocurrency/stock trading
 - Naked photos
 - A human rights worker collects evidence of atrocities in a region of oppression
 - Etc.

- Security issues in mobile computing devices
 - Confidentiality
 - Integrity
 - Authentication
 - Access control
Coercive Attack against Confidentiality

• To protect confidentiality of sensitive data, we can simply encrypt them
 – AES
 – 3DES

• Conventional encryption is vulnerable to a coercive attack
 – A user captures sensitive data using his/her smart phone, but is captured by an attacker
 – A journalist captured criminal evidence in a country of conflict, tries to cross the border, but is stopped by the border inspector

An attacker forces the device’s owner to disclose the decryption key
Plausible Deniable Encryption (PDE)

- Plausible Deniable Encryption (PDE) [Canetti et al., CRYPTO ‘97]: a crypto primitive designed for mitigating coercive attacks
 - Disclose the decoy key
 - Keep the true key secret

[Diagram showing encryption process involving original message, decoy message, and true key]
Implementing PDE in Systems - Hidden Volume

- Hidden volume [TRUECRYPT ’04] realizes the concept of PDE in systems
 - Only the decoy key will be disclosed
 - The encrypted hidden volume cannot be differentiated from the random noise
The Challenges: Over-writing Issues

- The data written to the public volume may **over-write** the data in the hidden volume
 - The hidden volume is part of the public volume
The Challenges: Over-writing Issues (cont.)

- File systems really matter for over-write issues
 - FAT allocates blocks sequentially
 - EXT4 does not allocate blocks sequentially

It is challenging to allow any file systems to be deployed while mitigating the over-write issues
MobiPluto – Key Insights [ACSAC ’15]

To realize file system friendly design, a new layer is introduced to decouple the file system and the underlying PDE system

1. Provide virtual volumes to file systems
2. Any block-based file system can be built on a virtual volume
3. Non-sequential allocation on the virtual volume will be converted to sequential allocation on the underlying layer

Evaluation Highlights

• Implemented a prototype of our solution on LG Nexus 4
Deniability Compromise at Lower Storage Layer?

Existing deniable storage systems (e.g., MobiPluto)

Apps/Android framework

OS/File system

flash translation layer

NAND flash

erase block

page

block-based access interface

A Main-stream Storage Architecture for Mobile Devices
NAND Flash Memory

- Flash memory
 - NAND flash (broadly used for mass-storage devices)
 - NOR flash (used for storing program code that rarely needs to be updated, e.g., a computer’s BOIS)

- NAND flash organization
 - Block
 - Page

![Diagram of NAND Flash Memory]

- Block (e.g., 128KB)
- Page (e.g., 4KB)
Flash Memory Programming

All ‘1’ initially:

Write 0x0b:
Rule:
1) 1 can be programmed to 0
2) 0 cannot be programmed to 1 except performing an erasure

Write 0x0f?

Need to erase to all ‘1’ first
Special Characteristics of Flash Memory

• Update unfriendly
 – Over-writing a page requires first erasing the entire block
 – Write is performed in pages (e.g., 4KB), but erase is performed in blocks (e.g., 128KB)
 – Over-write may cause significant write amplification
 – Usually prefer out-of-place update instead of in-place update
Special Characteristics of Flash Memory (cont.)

- Support **a finite number of program-erase (P/E) cycles**
 - Each flash block can only be programmed/erased for a limited number of times (e.g., 10K)
 - Data should be placed evenly across flash (**wear leveling**)
How to Manage NAND Flash

• Flash-specific file systems, which can handle the special characteristics of NDND flash
 – YAFFS/YAFFS2, UBIFS, F2FS, JFFS/JFFS2

• Flash translation layer (FTL) – a flash firmware embedded into the flash storage device, which can handle the special characteristics of NAND flash and emulate the flash storage as a regular block device (most popular)
 – SSD
 – USB
 – SD / miniSD/MicroSD
 – MMC cards
Flash Translation Layer (FTL)

FTL usually provides the following functionality:
- Address translation
- Garbage collection (GC)
- Wear leveling (WL)
- Bad block management

FTL

NAND Flash

File system

Block-based Access Interface

Address translation

Garbage collection

Wear leveling

Bad block management

Flash-based block device
Existing PDE Systems for Mobile Devices

- Most of the existing PDE systems deploy hidden volume on top of the block device
 - Mobiflage [Skillen et al., NDSS ’13]
 - MobiHydra [Yu et al., ISC ’14]
 - MobiPluto [Chang et al., ACSAC ’15]
 - MobiCeal [Chang et al., DSN ’18]
Deniability May be Compromised When Deploying Hidden Volume on The Block Layer

Block-based PDE systems

Attacker’s view

deniability compromise

Apps/Android framework

OS/File system

block-based access interface

flash translation layer (FTL)

erase block

page

NAND flash

Flash storage (eMMC card/SD card)
Compromise of Existing PDEs Built on top of the block device (1)

A flash block partially used by the hidden volume

Cannot be decrypted

random
random
random
random

Ciphertext
Ciphertext
All “1”
All “1”
All “1”

A page

erase

A block

A flash block partially used by the hidden volume
Compromise of Existing PDEs Built on top of the block device (2)

Block i and block j have duplicate randomness

Special flash memory operations (wear leveling, garbage collection, bad block management) on the hidden volume will create duplicate randomness

Built on top of block device (outside the black box of flash memory), and cannot manage the internal flash memory.

Unexpected "traces" of hidden sensitive data could be created in the flash memory which is out of the control of the block-based PDE.
Our FTL-based PDE System [CCS ’17]

Key insight 1: move the public/hidden volume design down to the flash translation layer (FTL) and strictly isolation them.

Our FTL-based PDE System (cont.)

Key insight 1: move the public/hidden volume design down to the flash translation layer (FTL) and strictly isolate them.

1. Strict isolation between the public volume and the hidden volume: **Public data and hidden data will not share flash blocks**; Upon quitting the device, if any flash blocks have hidden data written at the beginning but have empty pages not yet filled, those pages should be filled with randomness
2. Manipulating the special functions (wear leveling, garbage collection, bad block management) of the FTL, **so that they will avoid producing duplicated randomness for the hidden data**.
Our FTL-based PDE System (cont.)

Key insight 2: to mitigate the over-write issue, the public volume should void using blocks occupied by the hidden sensitive data:

1) The public volume will allocate blocks from the head of the free block pool; active garbage collection will be performed to fill the head of the free block pool.

2) The hidden volume will allocate blocks from the tail of the truly free blocks; active garbage collection will be performed to fill the tail of the truly free blocks.
Other Issues We Having Been Exploring

- How to defend against multi-snapshot adversaries [S&P ’20, DSN ’18]
 – The adversary may have access to the victim device multiple times
- How to avoid deniability compromise in the memory [EdgeSP '21]?
- How to integrate the PDE system in both the upper layers (file system, block device) and the flash memory layer
- How to adapt PDE systems for wearable devices [AC3 '21]

Acknowledgments

• The PDE project has been supported by US National Science Foundation under grant number 1928349-CNS