
1

HiPDS: A Storage Hardware-independent Plausibly
Deniable Storage System

Niusen Chen, Bo Chen, Senior Member, IEEE

Abstract—A plausibly deniable storage (PDS) system not only
conceals the plaintext of sensitive data, but also hides their very
existence. It can essentially mitigate a novel coercive attack, in
which the adversary captures both a victim and his/her device,
and coerces the victim to disclose the sensitive data. A rich
number of PDS systems have been designed in the literature.
However, all of them are specifically designed for a certain type
of storage hardware. In this work, we have designed HiPDS, the
first storage Hardware-independent Plausibly Deniable Storage
system. HiPDS can defend against a multi-snapshot adversary
which can have access to both the external storage and the
internal memory at multiple checkpoints over time. By leveraging
our adapted chameleon hash, we encode the sensitive data into
the non-sensitive cover data in a fine-grained manner, so that both
the existence and the access of the sensitive data on the external
storage device can be plausibly denied. In addition, to prevent
the sensitive data from being compromised in the memory, the
encoding/decoding process is run in a secure memory region
isolated by the trusted execution environment. A salient feature
of HiPDS is that it can ensure deniability on any types of
storage media, which is essentially important for users who may
change the external storage devices over time. Security analysis
and experimental evaluation confirm that HiPDS can ensure
deniability against the multi-snapshot adversary at the cost of
an acceptable overhead.

Index Terms—confidentiality, coercive attacks, plausible deni-
ability, storage hardware-independent, chameleon hash, trusted
execution environment

I. INTRODUCTION

Modern computing devices have been increasingly used to
store and process sensitive data and, a critical issue is to ensure
confidentiality of the sensitive data over time. This is not only
essential for protecting privacy of users, but also necessary for
remaining compliant with regulations such as Health Insurance
Portability and Accountability Act (HIPAA) [30], Sarbanes-
Oxley Act (SOX) [60], etc. To ensure confidentiality of the
data, we can simply encrypt them, at either the file level
or the disk level. Traditional encryption algorithms, however,
transform the problem of data protection to the problem of key
protection. Such a transformation is vulnerable to a coercive
attack [14], [25], [64], in which the adversary can capture
both the device and the victim user, and coerce the user to

Manuscript received 08-Apr-2023; revised 06-Oct-2023. This work was
supported by the US National Science Foundation under Grant CNS-1928349,
CNS-2225424, and DGE-2043022 (Corresponding author: Bo Chen.)

The authors are with the Department of Computer Science, Michigan Tech-
nological University, Houghton, MI 49931 USA (e-mail: niusenc@mtu.edu;
bchen@mtu.edu).

The final version of the paper is available in IEEE Xplore [3].

disclose the key needed for decrypting the ciphertext found in
the victim device.

To defend against the coercive attacks, a new plausibly
deniable encryption (PDE) [18] has been designed. The PDE
transforms a sensitive message to ciphertext in a special way,
so that upon decryption, when using a true key, the original
sensitive message will be obtained, but, when using a decoy
key, a decoy non-sensitive message will be obtained. Upon
being coerced, the victim user can simply disclose the decoy
key and, using the decoy key, the adversary can decrypt
the ciphertext to obtain the non-sensitive message, being
unaware of the existence of the sensitive message. The PDE is
essentially different from traditional encryption, as it not only
conceals the data plaintext, but also plausibly denies its very
existence, adding an extra layer of confidentiality protection.

The concept of PDE has been leveraged to build a novel
plausibly deniable storage (PDS) system which can protect
both the plaintext and the existence of the sensitive data being
stored. The PDS has been built for computing devices using
hard disk drives (HDD) as external storage. Such systems
include TrueCrypt [67], VeraCrypt [29], steganographic file
systems [8], [37], [50], [54], Hive [14], Datalair [19], Arti-
fice [12], PD-DM [23], etc. Those PDS systems however, have
been specifically designed for the block device and may not be
secure for computing devices using flash memory as external
storage, due to the unique security compromises rooted at flash
memory. Especially, when the adversary can gain access to
the raw flash, it may observe various special traces of hidden
sensitive data, compromising their deniability [26], [41].

The PDS systems were later designed for computing devices
using flash storage media. Several of them [21], [22], [33],
[39], [64], [73] still deploy PDS on the block layer, taking care
of various security and usability issues for mobile environ-
ments. However, they all suffer from deniability compromises
when the adversary can have access to the internal flash
memory and extract traces of hidden sensitive data which
are invisible to the block layer. Directly integrating the PDS
with the raw flash memory can eliminate the aforementioned
compromise. Such designs include DEFY [55], DEFTL [41],
INFUSE [24], PEARL [25], CrossPDE [27], which leverage
the unique nature of flash storage media to achieve deniability.

We have observed a few limitations present in those existing
PDS system designs: First, they are strongly coupled with
a specific type of storage medium and cannot be used in
a different type of storage medium. Specifically, the HDD-
based PDS systems cannot be deployed on the flash media due
to the potential deniability compromises and, the flash-based
PDS systems cannot be deployed on the HDDs due to the
requirement of flash memory hardware support. Second, they©2023 IEEE

2

mostly do not handle deniability compromises in the internal
memory. The past processing of the hidden sensitive data
essentially leaves traces in the internal memory and, which
may be identified by the adversary via memory forensics,
leading to deniability compromises.

Overcoming the aforementioned limitations is of essential
importance for PDS system designs because: 1) A PDS system
design which heavily relies on the underlying storage medium
would be cumbersome in real world. The user may change
the external storage device of his/her computer over time, e.g.,
upgrading an HDD to an SSD. If a storage hardware-dependent
PDS system is used, the user needs to find a replacement of
his/her PDS system after changing the external storage device,
a challenging task for those who lack computer skills. 2) For
a long time, the compromise of the PDS system in the internal
memory has been ignored as the focus was on the deniability
guarantee on the external storage device. Yet, a simple solution
would be restarting the computing device to eliminate the
traces of the hidden sensitive data in the volatile RAM, but
it would not be effective due to the retention effect1 of the
RAM [35], [36]. We need an effective solution which can
prevent the compromise of the PDS in the internal memory.

In this work, we overcome the aforementioned limitations
by designing HiPDS, a storage Hardware-independent Plausi-
bly Deniable Storage system which can simultaneously ensure
deniability regardless of the underlying storage hardware being
used and, meanwhile, effectively eliminate the deniability
compromises present in the internal memory. The design of
HiPDS is based on two key insights:
Insight #1: adapting chameleon hash to plausibly hide sensi-
tive data on the external storage device. A chameleon hash is
associated with both a public and a private key and, without
having access to the private key, a chameleon hash function
works just like a traditional collision-resistant hash function
(this implies that we can deny the chameleon hash function
as a regular collision-resistant hash function, so that the
adversary does not even know the existence of the private key).
However, when having access to the private key, collisions
of the hash function can be efficiently found. It is therefore
possible to hide the sensitive data as one of the collisions
for the given cover data and the hash value, if we choose
the right Chameleon hash construction and carefully adapt the
construction. Specifically, the user only stores the cover data
and the corresponding hash value in the external storage and,
the sensitive data are hidden among the cover data and the
hash value. Without knowing the private key, the adversary
cannot figure out the existence of the hidden sensitive data (this
implies that it is also impossible for the adversary to figure
out the plaintext of the sensitive data). Upon being coerced,
the user can simply disclose the public key (i.e., the decoy
key) and claim that the public key is used to compute the hash
value for the cover data; using the public key, the adversary
can only verify whether the hash value is corresponding to the
cover data, without being able to be aware of the existence of
the hidden sensitive data (and the private key as well). On the

1If data are staying long in the memory, they may be “remenbered” by the
memory cells.

contrary, the user can efficiently extract the sensitive data from
the cover data and the hash value using the private key.

A salient advantage of using the chameleon hash is that it
hides the sensitive data among the cover data, without concerns
about any potential deniability compromises in the storage
hardware [41]. This is because the sensitive data remain
hidden in the cover data along the entire storage data path.
In other words, the design remains secure independent of the
underlying storage hardware. In addition, the design remains
secure even if the adversary can have access to the external
storage multiple times over time, as every access of the hidden
sensitive data can be plausibly denied as that of the cover data.

We have faced a few challenges when leveraging the
chameleon hash for PDS. First, most existing chameleon hash
constructions cannot be immediately used to hide sensitive
data as they compress the input from a large field to generate
a condense hash value from a small field, making it infeasible
to re-generate the original input from the hash value (i.e.,
extracting the sensitive data turns impossible). To address this
challenge, we have identified the discrete log-based chameleon
Hash construction (DCH) proposed by Krawczyk et al. [43]
which does not compress the input when generating the hash
value. Second, the DCH cannot be immediately used to hide
the sensitive data with plausible deniability, as the adversary
can compromise the deniability by identifying the existence
of a redundant random number, which is unfortunately nec-
essary for extracting the hidden sensitive data via chameleon
hash. To address this challenge, we have Adapted the DCH
(ADCH) construction so that the sensitive data can be hidden
and extracted without storing the redundant random number.
Third, for the ADCH, it is computationally expensive to find
a suitable random number r’. A brute-force search has a
computational complexity of O(q), where q is a large prime
number. To address this challenge, we have designed a novel
algorithm which can efficiently compute r’ in constant time.
Insight #2: leveraging trusted execution environment (TEE) to
prevent deniability compromises in the memory. The adversary
may have access to the memory and identify the past existence
of the hidden sensitive data. To avoid such a compromise, we
can keep track of any traces of the hidden sensitive data in the
memory, and purge the traces upon finishing processing them.
This immediate solution however, could be cumbersome as
traces of the hidden sensitive data may be here and there in
the memory and, keeping track of and purging them itself
would be challenging. Our solution is: 1) We process the
hidden sensitive data in a secure memory region isolated by
the TEE. The TEE can ensure that even if the adversary can
compromise the OS and perform forensic analysis over the
memory, it cannot identify any traces of the hidden sensitive
in the secure memory. By doing this, we can reduce our efforts
to safeguard only the sensitive data and private key during
their entry into the TEE. 2) To ensure that the use of TEE
is deniable, the TEE for the deniable storage system should
only be launched when processing hidden sensitive data and,
once the processing is finished, the TEE should be terminated.
In this way, the adversary cannot interact with the TEE
online to compromise the deniability and, the prior running
of the TEE can be plausibly denied as running TEE-based

3

confidential computing tasks (e.g., private web query [51],
secure payment [70]) instead of a deniable storage system.

Note that the TEE and the Chameleon hash are completely
orthogonal in our design. However, the TEE and the other
exiting PDS systems [8], [14], [19], [21], [22], [41], [50],
[64], [73] are not necessarily orthogonal, because: most of
them encrypt the sensitive data; after having encrypted the
sensitive data in the TEE, the TEE (e.g., the SGX) typically
needs to rely on the insecure operating system to write the
encrypted sensitive data to the external storage; therefore, the
untrusted OS can observe the encrypted ciphertext and suspect
something sensitive has been hidden inside. This deniability
compromise is not present in our design, as the sensitive data
have been encoded into the cover data using the Chameleon
hash once they get out of the TEE and, the cover data are
clearly non-sensitive and hence not suspicious.
Contributions. Our contributions are summarized below:

• We have designed HiPDS, the first secure plausibly de-
niable storage system which is deployable in any storage
hardware. HiPDS leverages both the cryptography (i.e,
chameleon hash) and the TEE to protect the hidden
sensitive in both the external storage and the internal
memory.

• To the best of our knowledge, HiPDS is the first work
which adapts chameleon hash for plausible information
hiding, an independent research contribution.

• We have analyzed the security of HiPDS. In addition, we
have implemented a prototype of HiPDS and experimen-
tally evaluated its performance.

II. BACKGROUND

Plausibly deniable storage (PDS) system. A PDS system
can be built using a hidden volume technique [67], in which
the sensitive data are stored in a hidden volume, and the entire
hidden volume will be encrypted using a true key and stored at
the end of the disk starting from a secret offset. The adversary
is not able to identify the existence of the hidden volume
which is indistinguishable from the randomness filled in the
entire disk initially. The PDS system can be also built using
a steganographic file system [8], [50], in which the sensitive
data are stored hidden at random locations of the disk and are
indifferentiable from the randomness filled to the disk initially.
Chameleon hash. As a non-standard type of collision re-
sistant hash function, a chameleon hash function [43] (or a
trapdoor hash function) is associated with a pair of public
and private keys. The private key is also called the trapdoor.
The chameleon hash function typically has some interesting
properties: 1) Anyone who knows the public key can compute
the hash function; 2) Without knowing the trapdoor, the hash
function is similar to a traditional hash function that is collision
resistant; 3) Anyone who knows the trapdoor can efficiently
find collisions for every given input.

In some sense, without knowing the trapdoor, the chameleon
hash function is equivalent to a regular collision resistant hash
function (i.e., the hash function construction itself will not
lead to the deniability compromise). However, by knowing the
trapdoor, the collisions can be efficiently computed. Due to the

Fig. 1. Intel SGX.

nice properties of chameleon hash, it has been used extensively
in blockchain redaction [11], verifiable image revision [71], E-
cheque protocol [66], etc. In this work, we have initiated the
study of leveraging chameleon hash for plausible information
hiding against coercive attacks.
Trusted execution environment. A trusted execution environ-
ment (TEE) has been designed to support secure computation
in modern computing devices [59]. A TEE often relies on
the hardware to create a secure area which is isolated from
the normal operating system, so that the computation running
in the this area remains protected even if the OS is compro-
mised. Popular TEE implementations for personal computers
include Intel software guard extensions (SGX) and AMD se-
cure encrypted virtualization (SEV)/secure memory encryption
(SME)/transparent SME (TSME). We will use Intel SGX as
an example to illustrate how a TEE works. SGX is a set of
security related instructions that are embedded in the modern
Intel CPUs [31]. Its structure is shown in Figure 1. It allows
defining specific areas in memory as secret areas known as
enclaves. The content and the code in an enclave is protected
and cannot be accessed by any other processes outside the
enclave, including the processes with higher privileges. Each
enclave is encrypted by the CPU and, therefore, the CPU can
protect the code from being examined by an adversary. An
SGX project typically contains two components, an untrusted
component which runs in the untrusted world, as well as a
trusted component which runs in the trusted world protected
by the processor. Applications running in the untrusted world
can invoke pre-defined functions inside the enclave, and the
invocations are ECALLs (or enclave calls). The enclave can
also call pre-defined functions in the untrusted world, and the
invocations are OCALLs (or outside calls).

III. MODELS AND ASSUMPTIONS

System model. We consider a personal computer (e.g., a
desktop, a laptop) which is used to store and to process
sensitive data. The processor of the computer is equipped with
a trusted execution environment (TEE), e.g., Intel SGX, or
AMD SEV/SME/TSME. Note that: 1) equipping TEE itself
will not cause any deniability issues as the TEE has been
widely deployed in computers [2], and 2) using TEE itself
will not cause any deniability issues either, as the TEE has

4

been used broadly for confidential computing applications [7]
(i.e., using TEE does not imply the existence of a deniable
storage system). The external storage of the computer can be
either a magnetic storage like hard disk drive (HDD) or a flash
storage device like a solid state drive (SSD).
Adversarial model. We consider a computationally bounded
adversary. The adversary is coercive [18], i.e., it can capture
both the victim user and his/her computer at some point,
and force him/her to reveal the sensitive data. The coercion
methods can be threatening the victim via legal penalties or
performing a rubber-hose cryptanalysis [15]. The adversary is
assumed to be able to capture the victim and his/her computer
multiple times [14] over time, i.e., a multi-snapshot adversary.
For example, a user may travel with a laptop but lose the
possession of the laptop when crossing the checkpoints of
the airports. After capturing a victim computer each time, the
adversary can play with the victim computer; in addition, it can
obtain snapshots of both the external storage and the internal
memory of the victim computer, performing forensic analysis
over those snapshots to compromise the deniability; further,
the adversary can also compare the snapshots captured at
different points of time, aiming to compromise the deniability.
The multiple snapshots captured at different points of time
indeed can help the adversary to compromise the deniability
as justified below:
Case 1: attacking a PDS system based on the hidden volume
technique via multiple snapshots. The hidden volume-based
PDS system [21], [41], [64] creates two volumes, a public
and a hidden volume (Figure 2). The entire disk is filled with
random data initially. The hidden volume is hidden at the
second half of the disk and remains indifferentiable from the
random data. From the view of the adversary, the second half
of the disk is empty. If the user updates data in the hidden
volume, by comparing the multiple snapshots (e.g., snapshot I
and II) captured at different points of time, the adversary will
be aware that the “empty” space has been changed which is
suspicious (Figure 2). In this way, the deniability of the PDS
will be compromised.
Case 2: attacking the PDS system based on steganography.
In a steganographic file system-based PDS [8], [50], sensitive
data are hidden in the dummy file blocks. Those dummy file
blocks should not be modified from the adversary’s view. If the
user updates sensitive data, the adversary will observe changes
in the dummy file blocks by comparing the snapshots captured
at different points of times, compromising the deniability.
Assumptions. We rely on a few assumptions: 1) TEE is
secure. This assumption is common for TEE-based secure
applications [57]. Although various attacks have been found
against TEE [45], [46], [53], [61]–[63], [63], [68], enhancing
TEE security has been taken care actively by orthogonal
works [16], [34], [74] and is not the focus of this work. 2) Data
corruption attacks are out of the scope of this work, and we
will briefly discuss mitigating strategies in Sec. V-B. 3) At the
time when the adversary physically captures the victim device,
the user is not processing hidden sensitive data. Otherwise, the
adversary can trivially retrieve the sensitive information. This
assumption implies that TEE is not used to process hidden
sensitive data when the adversary is accessing the victim

Fig. 2. Attacking a hidden volume-based PDS system via multiple snapshots.

device, i.e., the adversary cannot compromise the deniability
by simply observing the running of the TEE or playing with
the TEE. 4) We aim to deny the existence of sensitive data and,
therefore, the adversary has no prior knowledge on both the
existence of the sensitive data and the plaintext of the sensitive
data. In other words, a known-plaintext attack [49] on the
hidden sensitive data is infeasible under our adversarial model.
5) Similar to the prior works [25], [41], [64], we assume that
the capability of HiPDS is widespread and its available itself
would not be a red flag. For example, HiPDS is part of a
standard operation system distribution, and its existence does
not imply the use of a plausibly deniable storage system [25].

IV. HiPDS: A STORAGE HARDWARE-INDEPENDENT
PLAUSIBLY DENIABLE STORAGE SYSTEM

A. Adapting Chameleon Hash to Plausibly Hiding Information
on An External Storage Device

Not all the chameleon hash constructions can be used to hide
information, as most of them [10], [11], [17], [72] compress
the large input to a condense hash value, rendering the sensi-
tive information hidden in the input irrecoverable. Fortunately,
we have identified one chameleon hash construction which
may be used for the hiding purpose, namely, the Discrete
log-based Chameleon Hash construction (DCH) proposed by
Krawczyk et al. [43]. DCH works as follows:

Let p and q be two large prime numbers such that p =
kq+ 1, where k is an integer. Let g be an element of order q
in Z∗

p. The private key x can be chosen as a random number
from Z∗

q , and the public key y can be computed as y = gx mod
p. p, q, and g are also part of the public key. Given a message
m from Z∗

q , the chameleon hash function is constructed as:
CHAM-HASHy(m, r) = gmyr mod p, where r is a random
number from Z∗

q . It is clear that by knowing the public key
y, we can efficiently compute the hash value of any given
message m ∈ Z∗

q for the chosen random number r ∈ Z∗
q .

In addition, DCH satisfies three security properties [43] as a
chameleon hash:

1) Uniformity. All message m induce the same probability
distribution on CHAM-HASHy(m, r), for r chosen uni-
formly at random. In particular, by knowing the public
key y, the random number r, as well as the hash value
gmyr mod p, it is computationally hard to compute m
due to the hardness of computing discrete logarithms.

5

2) Collision resistance: Without knowing the private key x,
it is computationally infeasible to find a collision mes-
sage m′ ∈ Z∗

q and a random number r′ ∈ Z∗
q such that

CHAM-HASHy(m, r) = CHAM-HASHy(m
′, r′). The

collision resistance property of DCH (without knowing
x) is based on the hardness of computing discrete
logarithms.

3) Trapdoor collisions: By knowing the private key x,
we can efficiently find a collision message m′ ∈ Z∗

q

and a random number r′ ∈ Z∗
q such that CHAM-

HASHy(m, r) = CHAM-HASHy(m
′, r′), by solving

the equation m+ xr = m′ + xr′ mod q.
Mostly, without the knowledge of private key x, the DCH
behaves like a regular collision resistant hash function (secu-
rity property 1 and 2). In addition, the construction of DCH
hashing is a pretty common construction based on the hardness
of computing discrete logarithms [9], [32], i.e., the format of
the construction does not automatically indicate a chameleon
hash construction.
Immediately using DCH for plausible information hiding.
To hide sensitive data, an immediate approach is to directly
use DCH, with private key x and public (decoy) key y, p,
q, and g, as follows: Given cover data m ∈ Z∗

q , we pick a
random number r from Z∗

q , and compute a hash value h as:
h=gmyr mod p. To hide sensitive data m′ ∈ Z∗

q , we utilize the
private key x and compute the corresponding random number
r′ ∈ Z∗

q by solving the equation m+ xr = m′ + xr′ mod q.
We then remove m′ and store m, r, h, and r′ to the external
storage. m′ can be computed at any time when needed by
solving the equation m + xr = m′ + xr′ mod q using m, r,
r′ if x is known. When the adversary comes and coerces the
victim for the secret, the victim can disclose the decoy key y.
The adversary can use y to verify whether or not h is the hash
value of the cover data m with random number r. In addition,
the adversary will notice the existence of r′ on the external
storage and suspect that sensitive data are stored hidden, as
the victim cannot plausibly explain the existence of r′.
Adapting DCH (ADCH) for plausible information hiding.
The immediate DCH is insecure due to the existence of r′,
which is unfortunately needed for recovering the sensitive data
m′. Note that r′ cannot be computed on the fly, and cannot be
stored encrypted as encryption itself is not plausibly deniable.
Here m′ is hidden as one of the collisions of the cover data m.
For a hash function, the role of the original message and the
collision message seem to be exchangeable. In other words,
given the collision message, the original message is also one of
its collisions. Based on this observation, we adapt the DCH for
plausible information hiding by swapping the cover data and
the sensitive data, and the resulted scheme is called ADCH.
Specifically, we treat the sensitive data as m from Z∗

q , and
generate a random number r from Z∗

q using a pseudo-random
function (PRF) with the secret key x. Note that the input to
the PRF can be generated on the fly using known information
like the file path and the block index. Using m and r, we
can compute a hash value h as: h=gmyr mod p. We treat
the cover data as m′, which is from Z∗

q . Using the private
key x, we can compute the random number r′ from Z∗

q by
solving the equation m + xr = m′ + xr′ mod q. We then

remove m and store m′, r′, and h, to the external storage.
Upon being coerced by the adversary, the victim can simply
disclose the public key y and, the adversary uses y to verify
that h is the correct hash value of the cover data m′ with
random number r′ (note that CHAM-HASHy(m

′, r′) is equal
to CHAM-HASHy(m, r)). The adversary however will not
be able to notice anything abnormal on the external storage
device, hence will not be able to identify the existence of
the secret key x and the hidden sensitive data m. A side-by-
side comparison between DCH and our ADCH is shown in
Figure 3. On the contrary, the victim can restore m at any
time when needed by solving the equation m+xr = m′+xr′

mod q by knowing m′, r′, and x, and generating r on the fly
using a pseudo-random function.

B. Design Overview

We have designed HiPDS, the first storage Hardware-
independent Plausibly Deniable Storage system. To defend
against the coercive attack, we encode the sensitive data into
the non-sensitive cover data, so that every single read and
write of the sensitive data on the external storage device can
be plausibly denied as the read and write of the cover data.
This turns to be possible by leveraging our newly designed
ADCH (Sec. IV-A). Specifically, to write the sensitive data to
the external storage, we will encode them to the cover data
using ADCH. The resulted random numbers and hash values,
together with the cover data, will be committed to the external
storage. To read the sensitive data from the external storage,
HiPDS will read the corresponding cover data, together with
the random numbers and the hash values, and decode them to
obtain the original sensitive data. By analyzing the external
storage, the adversary can obtain the cover data, the random
numbers and the hash values. The adversary cannot derive any
knowledge about the hidden sensitive data from the cover data.
In addition, each hash value can be plausibly denied as the
hash value computed over the corresponding cover data and
the random number thanks to the nice property of chameleon
hash. Upon being coerced, the victim can disclose the public
(decoy) key and, using the public key, the adversary can verify
whether the hash value is corresponding to the cover data and
the random number. Note that hacking [41] into the internal
hardware of the external storage will not give the adversary
any advantage of compromising the deniability, as the sensitive
data remain hidden in the cover data even in the raw disk
image.

To prevent the hidden sensitive data from being leaked in
the internal memory, both the encode and the decode process
will be run in a trusted execution environment (TEE), a secure
area of the main processor. Each time upon finishing read-
ing/writing the sensitive data, the TEE (e.g., an SGX enclave
and the code running inside) should be completely destroyed
so that the adversary cannot have access to a TEE previously
running for encoding/decoding hidden sensitive data. Note that
the sensitive data and the private key should not be present in
the untrusted memory. Therefore, they are recommended to
be input from or output to secure I/O devices [47], [56], [65],
[69]. Optionally, if they are from the untrusted memory, they

6

Fig. 3. A comparison between the immediate DCH and our ADCH when the adversary has access to the external storage.

Fig. 4. An overview of HiPDS. Both the untrusted memory and the external storage can be compromised by the adversary, which belong to the untrusted
world. The trusted memory cannot be compromised by the adversary, belonging to the trusted world. The external storage can consist of any type of storage
media including hard disk drives and solid state drives.

should be sanitized immediately from the untrusted memory
once loaded into the TEE. An overview of our HiPDS design
is shown in Figure 4, with details elaborated in Sec. IV-C.

C. Design Details

Setup of HiPDS. κ is a security parameter. We pick two
large prime numbers p and q, such that p = kq + 1, where
k is a positive integer. We also pick an element g of order
q from Z∗

p. x is a number randomly selected from Z∗
q , and

y is computed as gx mod p. k′ is randomly picked from
{0, 1}κ. The public key is (p, q, g, y) while the private key
is (x, k′). We also define a pseudo-random function (PRF) f :
{0, 1}κ × {0, 1}∗ → {0, 1}log2(q). The public (decoy) key is
committed to the external storage of the computing device,
while the private (secret) key is only available to the device
when reading/writing sensitive data.

Each time to read/write hidden sensitive data, HiPDS will
launch a trusted execution environment (TEE) and the private
key should be sent to the TEE. The write operation will work

with the encoding process running in the TEE, while the read
operation will work with the decoding process running in the
TEE. After finishing reading/writing the hidden sensitive data,
the TEE (as well as the private key) should be destroyed from
the device. This is necessary; otherwise, the adversary may
be able to “play with” the TEE online to compromise the
deniability. Considering reading/writing the sensitive data is
a rare event, the overhead introduced by launching/destroying
the TEE (e.g., an SGX enclave) would not be significant.

Encode. The encode process is described in Algorithm 1. It
will encode a sensitive message m into a cover message m′,
based on both the public key (p, q, g, y) and the private key
(x, k′). It will first generate a random number for the sensitive
message m, by applying PRF f with key k over the metadata
of the cover message m′. Note that the metadata of the cover
message should be unique and stable. For example, if the cover
message is a file block, the metadata can be: the host id || file
path || the index of the block in the file. In other words, for
the same cover message at the same file location, we will

7

always be able to re-generate the same random number r.
After knowing m′, m, r, and x, we will be able to determine
r′. With m′ and r′, and y, we will be able to compute the
hash value h for (m′, r′).

Input: cover message m′, sensitive message m,
private key (x, k′), public key (p, q, g, y)

Output: random number r′, hash value h
1. r = fk′(metadata of cover message m′)
2. Determine r′ such that m+ xr = m′ + xr′ mod q
3. h = gm

′
yr

′
mod p

return r′, h
Algorithm 1: Encode

Decode. The decode process is described in Algorithm 2. This
process will decode the sensitive message m from the cover
message m′, based on the public key (p, q, g, y), the private
key (x, k′), and the random number r′ associating with m′.
It will first re-generate the random number for the sensitive
message m, by applying f with key k over the metadata of
the cover message m′. By knowing m′, r′, r, and x, we can
then easily compute the sensitive message m.

Input: cover message m′, random number r′, private
key (x, k′), public key (p, q, g, y)

Output: sensitive message m
1. r = fk′(meta data of cover message m′)
2. m = m′ − xr + xr′ mod q
return m

Algorithm 2: Decode

Write hidden sensitive data. The write operation allows the
user to write a sensitive file to the external storage. The
sensitive file is first loaded into the TEE. To process the
sensitive file, we view it as a collection of file blocks, each
of which is n-byte. This implies that our design can support
fine-grained access of the hidden sensitive data in a deniable
manner. To encode this sensitive file, a cover file needs to
be read from the untrusted world outside the TEE. Note that
ideally, the cover file should be of the same size of the sensitive
file (refer to Sec. V-B for handling the case in which the cover
file has a different size than the sensitive file). The cover file
is also viewed as a collection of n-byte file blocks. HiPDS
will read the first block from the cover file into the TEE,
encoding the first block of the sensitive file into the cover block
using the Encode algorithm. The resulted random number
and hash value will be returned to the untrusted world. The
aforementioned process will be repeated until all the blocks of
the sensitive file have been encoded. We can buffer multiple
blocks from the cover file and send them as a batch to the TEE
for processing. Finally, the entire cover file, the collection of
random values, as well as the collection of the hash values
will be committed to the external storage.
Read hidden sensitive data. The read operation allows the
user to read a sensitive file from the external storage. Similarly,
the cover file is viewed as a collection of n-byte blocks. HiPDS
will read each block from the cover file into the TEE, together
with its corresponding random number and the hash value, and
decode the cover block using the Decode algorithm, obtaining

the sensitive file block. Note that we can also buffer multiple
blocks from the cover file and send them as a batch to the
TEE for processing.

D. Optimizing The Encoding Process

There are a few steps in the encoding process (Algorithm 1)
which are time-consuming, and we optimize them as follows.
Efficiently computing the random number r′. In Step 2
of encoding (Algorithm 1), we need to determine a suitable
random number r′. This could be achieved using a brute-force
searching by initializing r′ with 0, and increasing it by 1 until
Equation 1 holds.

m+ xr = m′ + xr′ mod q (1)

This brute-force searching has a computational complexity of
O(q), which is extremely expensive as q is a large prime
number (e.g., 128 bits or larger). To efficiently compute r′,
we first derive Equation 2 from the Equation 1:

xr′ +Nq = m+ xr −m′

where r′ ∈ Z∗
q and N is an integer.

(2)

Equation 2 is a linear equation with two unknowns r′ and N .
To solve this linear equation, we need to first check whether it
has integer solutions. Equation 2 has integer solutions if and
only if the greatest common divisor of x and q (denoted as
gcd(x, q)) can be divided by m+ xr−m′ [28], [58]. As q is
a large prime number and x is from Z∗

q , gcd(x, q) is 1, which
is always divisible by m+xr−m′. We therefore can confirm
that Equation 2 always has integer solutions. To efficiently
find out a pair of (r′, N) which can satisfy this equitation, we
can leverage Extended Euclidean Algorithm [13] as follows:
We first find a solution of Equation 3 via Extended Euclidean
Algorithm, and the solution is assumed as (r′0, N0). Then,
the Equation 3 can be converted to Equation 4, which is
equivalent to Equation 5. As gcd(x, q) is 1, we can further get
Equation 6. By comparing Equation 2 and 6, we can infer that
(r′0(m+xr−m′), N0(m+xr−m′)) is a solution of Equation 2.
Therefore, r′ can be computed as (r′0 · (m+xr−m′)) mod q.
In other words, we only need to calculate r′0 once during
the initialization, and for each encoding, we can compute r′

efficiently in O(1) time, instead of O(q) in the brute-force
searching. In addition, the solution for the unknowns r′ and
N in Equation 2 can be further generalized in Equation 7,
where t is an integer. Therefore, r′ can be an arbitrary value
which satisfies the condition in Equation 7, rather than a fixed
value.

xr′ +Nq = gcd(x, q) (3)

xr′0 +N0q = gcd(x, q) (4)

xr′0(m+ xr −m′)

gcd(x, q)
+

N0q(m+ xr −m′)

gcd(x, q)
= m+ xr −m′

(5)

x(r′0(m+xr−m′))+(N0(m+xr−m′))q = m+xr−m′ (6)

r′ = r′0(m+ xr −m′) + q ∗ t
N = N0(m+ xr −m′)− x ∗ t

(7)

8

V. ANALYSIS AND DISCUSSION

A. Security Analysis

We consider an adversary (Sec. III) which can coerce the
victim for the secrets at multiple checkpoints (i.e., multi-
snapshot coercive adversary). In the following, we show that
HiPDS is secure against the multi-snapshot adversary which
can have access to the external storage and the memory
multiple times over time. Note that the “cover data” refer to
both cover files and data blocks in a cover file in HiPDS.
Plausibly denying the existence of sensitive data in the
external storage. The only relation between the cover data and
the sensitive data is, the sensitive data is one of the collisions
of the cover data in the hash function. However, without
knowing the private key, it is computationally infeasible for
the adversary to find out the collisions as the discrete log-
based chameleon hash function (DCH) is collision resistant
(Sec. IV-A). In addition, without knowing the private key, the
DCH is similar to a regular keyed hash function (Sec. IV-A)
and, the adversary is not able to confirm that the hash function
used in HiPDS is a chameleon hash function (i.e., the existence
of this hash function itself does not raise a red flag). Upon
being coerced, the victim only discloses the public key and,
using the public key, the adversary can verify the key is really
used to compute the hash value for the cover data (together
with its corresponding random number). It cannot find out the
existence of the private key, hence the existence of the hidden
sensitive data. Therefore, HiPDS can mitigate the coercive
adversary which can have access to the external storage.
Having access to the external storage at multiple checkpoints
does not offer the adversary any advantage in compromising
the deniability as every read/write of the sensitive data on
the external storage device can be plausibly explained as
reading/writing the cover data.
Plausibly denying sensitive data in the memory. Sensitive
data are only processed in the secure memory region protected
at the hardware level by the TEE. This implies that even if
the adversary can obtain the root privilege, it cannot hack
into this secure memory region and hence cannot obtain any
information (as well as the existence) of the sensitive data
by performing forensic analysis over the memory if the TEE
is secure. The existence of such a secure memory region
can be plausibly explained, as the TEE can be used for any
confidential computing tasks like secure payment and does not
indicate the existence of a deniable storage system (Sec. III).
The adversary cannot capture the victim when he/she is right
processing the hidden sensitive data (Sec. III). Since the TEE
is destroyed immediately each time after finishing processing
the sensitive data, the adversary will not be able to capture
a TEE which is right processing the hidden sensitive data,
and hence cannot “play with” the TEE online in order to
compromise the deniability. Having access to the memory
multiple times at different checkpoints will not provide the
adversary any advantage of compromising the deniability
because: the adversary can at most find out the secure memory
region changes which can be plausibly explained as running
a different confidential computing task in the TEE before the
checkpoint.

B. Discussion

About the cover data. To ensure plausible deniability, the
cover data should be meaningful. In other words, in view of the
adversary, the cover data are regular data which are processed
by the user using the TEE due to some security concerns.
We can obtain this type of “real” cover files from public
search engines, public repository, or private non-sensitive files
discarded by the user. For instance, the user can generate
hundreds of English words, and use each English word to
query the mainstream search engines (e.g., google, bing),
collecting texts from the search results. The texts can be
combined further to generate the file content [42]. In addition,
to hide a sensitive file, we need to use a cover file which
is at least of the same size as the sensitive file. If the size
of the cover file is larger than the sensitive file, we can use
the first block of the cover file to keep track of those cover
file blocks encoded with the sensitive data. For example, if
we plan to use cover file block 2 to 11, we can encode 10
into cover file block 1 via chameleon hash; upon decoding,
after having decoded cover file block 1, we can obtain 10,
and know that cover file block 2 to 11 should be decoded.
To ensure plausible deniability, we should also process the
remaining file blocks in the cover file which do not have
sensitive data encoded, generating their hash values upon
writing using arbitrary random numbers. Lastly, to read/delete
sensitive data, the user needs to first locate the corresponding
cover file. Memorizing the mappings between the sensitive
files and the cover files could be difficult for the user. A
strategy would be carefully naming the cover file so that it can
facilitate memorization without being alert by the adversary.
Updating the sensitive data. To update the sensitive data, we
can read the corresponding cover file into the TEE, decode
it and obtain the sensitive file. We then update the sensitive
file. Re-encoding the updated sensitive file to the original cover
file may be problematic, because: 1) If the size of the sensitive
file grows, the original cover file may not be large enough to
encode the sensitive file again. 2) Re-encoding the updated
sensitive file into the same exact cover file implies that the
corresponding random numbers, all or partially, may need to
be changed. This would be aware by the adversary. A better
solution would be reading a new cover file and encoding the
updated sensitive file to it; in addition, the old cover file should
be deleted. This solution would be fine if the sensitive file
has been changed significantly, but it would not be efficient if
only a few file blocks of the sensitive file are updated. For this
case, we can re-encode the updated file blocks of the sensitive
file to the original cover file, by updating the corresponding
blocks in the cover file, as well as the corresponding random
numbers and hash values, claiming that the cover file has been
updated and hence some random numbers/hash values need to
be updated as well.
About associating a key and a hash with every file block.
Associating a key and a hash with every data block is not
unique in our design. This allows efficiently checking integrity
of the file, e.g., if the file is large, the verifier can only check
a random subset of file blocks and detect whether the file has
been corrupted or not with high probability. This has been

9

used broadly in the storage systems [9], [32]. Therefore, this
is deniable.
About protecting the code of HiPDS. The presence of a PDS
system in the software stack does not directly indicate that the
user is hiding information [25], [41], [64], considering that the
PDS system itself may be widespread and becomes a piece of
standard software in the OS [25], [64]. If the code itself is
really a concern for the user, we recommend the user to load
HiPDS each time when processing hidden sensitive data, and
to remove it after finishing the processing. The binary as well
as the configuration files of HiPDS are only a few Megabytes
in size, which would not create a significant burden on the
user considering that reading/writing hidden sensitive data is
typically a rare event.
Managing the private key. Each time when processing
hidden sensitive data, the private key (x, k′) needs to be
provided by the user. Note that the private key should be
loaded into the TEE securely via two options: 1) through a
secret I/O device, or 2) through an insure I/O device, but
its traces need to be sanitized in the untrusted memory after
it is loaded. Memorizing a long key would be difficult for
the user, and one improvement would be leveraging PBKDF2
(Password Based Key Derivation Function 2 [52]) so that
the user can generate the key on the fly using his/her secret
password [64].
About secure I/O devices. Upon processing hidden sensitive
data, a secure I/O device is recommended to load the sensitive
data/private key to the TEE, or to obtain output from the TEE.
These include a secure keyboard [56], [65], a secure network
interface card [56], etc. Since we assume that the adversary
cannot capture the victim when processing hidden sensitive
data (Sec. III), the adversary will not be able to capture the
victim when using the secure I/O devices for PDS. In addition,
the existence of the secure I/O devices itself will not cause
any deniability issues as they are not necessarily used for
deniable storage system. Note that the secure I/O devices are
not mandatory components of HiPDS. Users optionally can
use regular I/O devices, but need to ensure that traces of hidden
sensitive data/private key should be sanitized upon completion
of the processing of the sensitive data.
Mitigating data corruption attacks. HiPDS cannot resist
against the data corruption attacks, as the adversary can easily
destroy all the user data upon capturing the user device. A
suggestion would be to regularly make copies of the sensitive
data on different computer devices as a precautionary measure.
Implementing HiPDS under different TEEs or no TEE. The
purpose of using TEE is to isolate the processing of the hidden
sensitive data in the memory, so that the adversary is not able
to compromise this process by analyzing the memory. In the
following, we discuss two cases: 1) The TEE is available in
the victim device. The TEE has been available in main-stream
processors. Although Intel has deprecated SGX in the 11th and
12th generation of its core desktop processors, it continues
to support SGX in its Xeon processors [6]. In addition,
AMD supports SEV/SME/TSME in its Ryzen, RyzenPro and
EPYC processors [1], [4]. HiPDS can be broadly deployed
on computing devices using the aforementioned processors.
2) The TEE is not available in the victim device. In this case,

other secure hardware technologies, e.g., the trusted execution
technology (TXT) [40] which enables the provision of an iso-
lated execution environment, can be leveraged. Additionally,
software-based trusted execution environments [38], [44] can
be also utilized. They may not offer the same hardware-level
security guarantees as trusted hardware, but they can provide
a certain degree of protection for sensitive operations.

VI. IMPLEMENTATION AND EVALUATION

A. Implementation

We have developed a prototype of HiPDS. The TEE used
in our experiments is SGX enclave. OpenSSL-1.1.1m [5] was
integrated into SGX to facilitate our development. We chose
κ as 160, and initiated the PRF f using HMAC-SHA1 with a
160-bit random key k′. The output of the HMAC-SHA1 was
tuned to ensure that the generated random number r is from
Z∗
q .
The prime numbers p and q must satisfy p = kq+1, where k

is a positive integer. Finding out suitable large prime numbers
p and q which can satisfy this condition is not straightforward.
For simplicity, we fixed k as 2. This allows us to utilize the
OpenSSL API BN generate prime ex to generate a safe
large prime number p such that (p − 1)/2 is also prime,
i.e., q = (p − 1)/2 is guaranteed as prime. We will discuss
how the changes of the k value might affect the performance
(Sec. VI-B). We also determined a suitable g value which is
an element of order q in Z∗

p . In our experiments, we fixed g
as 2 for simplicity. We will also discuss how the changes of g
might effect the performance (Sec. VI-B). The private key x is
a number randomly selected from Z∗

q , and the public key y is
computed as gx mod p. To ensure each file block is from Z∗

q ,
the size of each file block is always 1 bit less than log2(q).
HiPDS supports two operations on sensitive data, namely,

write and read. We created two ECALL functions in the SGX
enclave for the write and the read operation. Upon writing sen-
sitive data, the cover file is divided into a collection of blocks
and sent to the enclave through ECALL for encoding the
sensitive data. After the encoding is finished, the enclave will
return hash values and random numbers for the corresponding
cover file blocks to the untrusted world. Upon reading sensitive
data, the cover file is viewed as a collection of blocks, which
will be entirely or partially read from the external storage
(together with the corresponding random numbers and hash
values), and sent to the enclave via ECALL for decoding to
obtain the sensitive data.
Experimental setup. We mainly ran our prototype in a local
Lenovo ThinkPad P50 laptop equipped with Intel Core i7-
6700HQ processors (2 Quad-core processors, totally 8 cores),
8GB memory, 500GB HDD and Ubuntu 18.04.6 LTS operating
system. The processors support SGX. The computational time
is averaged over 5 runs. When encoding/decoding a sensitive
file, we batched a few file blocks before invoking the ECALL,
with buffer size 5MB.

B. Evaluation

Evaluating the setup. We first evaluated the time needed for
setting up HiPDS. As we have fixed k and g as 2, we can

10

q 129-bit 193-bit 257-bit
Time (s) 0.001289 0.001313 0.001366

TABLE I
THE TIME NEEDED TO SET UP HiPDS WHEN THE SIZE OF FINITE FIELD

VARIES.

without optimization with optimization
time (s) 3.34 0.000021

TABLE II
THE TIME NEEDED FOR ENCODING ONE DATA BLOCK W/O THE

OPTIMIZATION (AVERAGED FROM THE ACCUMULATED TIME NEEDED TO
PROCESS MULTIPLE DATA BLOCKS UNDER THE SAME SETTING).

vary q (hence p is varied) which determines the field size of
Z∗

q . The time needed to set up HiPDS is shown in Table I. We
can observe that a larger q will result in slightly larger setup
time, which is reasonable as determining the parameters in a
larger field typically takes more computation.
Performance of reading/writing sensitive data. The major
overhead for reading/writing sensitive data comes from decod-
ing/encoding the data in the enclave. Therefore, we evaluated
the time needed for encoding/decoding a sensitive file when
the file size varies, e.g., 100MB, 300MB, 500MB, and 700MB.
During the experiments, we fully utilized the multiple cores
of the processors equipped with the laptop, by launching
8 SGX enclaves simultaneously [31], which work together
to process a given file in parallel, such that each enclave
processes an approximately equal portion of file blocks. The
experimental results are shown in Figure 5, Figure 6 and
Figure 7 for different q values. We can observe that: 1) A
larger size of block size has a lower computational time.
This is because the major computation cost comes from the
calculation of the hash value and generating random number
for each data block. A smaller size of data block will have
a more data blocks, which will need more time to process.
2) The computational time needed for encoding/decoding a
sensitive file increases linearly when the file size increases.
This is because, a larger file consists of more file blocks,
which requires more processing time. 3) The computational
time needed for decoding a file is much less than that for
encoding the file. The reason is, the encoding process involves
computing gm

′
in Z∗

p , which is more expensive in the large
prime field. 4) The throughput for encoding is approximately
1.48MB/s, while the throughput for decoding is approximately
10.02MB/s. The normal disk throughout in our laptop is
100+MB/s (measured via benchmark tool Bonnie++). The
throughout slowdown is significant, but the throughput is
certainly acceptable in practice, especially considering that
the hidden sensitive data is typically small in size [22] and,
accessing the hidden sensitive data is an infrequent event.
Performance comparison before and after the optimiza-
tion. We experimentally justified the effectiveness of our
optimization in encoding. We collected the time needed to
encode each data block (32 bytes) w/o using our optimization
technique. The result is shown in Table II, which confirms that,
1) determining a suitable random number r’ via a brute-force
searching in a large field is very slow, and 2) our optimization
can significantly reduce the time needed for determining r’

Fig. 5. The time needed for encoding/decoding a sensitive file in the SGX
enclave (q = 129 bits).

Fig. 6. The time needed for encoding/decoding a sensitive file in the SGX
enclave (q = 193 bits).

by eliminating the brute-force searching, hence significantly
reducing the time needed for encoding a block.
Comparing HiPDS with other PDS systems. We compared
HiPDS with other PDS systems (HIVE [14], DataLair [19],
PD-DM [23], and PEARL [25]) which can defend against
a multi-snapshot adversary. The comparison is shown in
Table III. We can observe that: 1) HiPDS does not affect
the I/O throughout on the public non-sensitive data. On the
contrary, the other PDS systems significantly affect the I/O
throughput on the public non-sensitive data (varying from 40%
to 99% decrease in the throughput). 2) HiPDS significantly
decreases the I/O throughput on the hidden sensitive data.
However, such a degradation is not unique for HiPDS, as the

Fig. 7. The time needed for encoding/decoding a sensitive file in the SGX
enclave (q = 257 bits).

11

Technique Public data Hidden data
HIVE [14] ORAM 0.44% 0.44%

DataLair [19] ORAM 0.95% - 37.24% 1.38% - 2.66%

PD-DM [23] Dummy
write

1.53% - 17.93% (HDD)
1.28% - 44.21% (SSD)

1.65% - 12.33% (HDD)
1.42% - 43.11% (SSD)

PEARL [25] WOM code 60.00% 10.00% - 20.00%

HiPDS Chameleon
hash 100.00% 2.00% - 9.12%

entry
TABLE III

PERFORMANCE COMPARISON AMONG PDS SYSTEMS AGAINST
MULTI-SNAPSHOT ADVERSARIES. FOR PUBLIC/HIDDEN DATA, EACH

ENTRY DESCRIBES A RATIO BETWEEN THE THROUGHPUT OF THE PDS
SYSTEM AND THE THROUGHPUT OF A NORMAL SYSTEM WITHOUT

DENIABILITY.

storage required
steganographic file system [8], [50] approximately 3×

hidden volume [21], [41], [64] approximately 2×
ORAM [14], [19] at least 2×
WOM code [25] approximately 5×

HiPDS (our design) approximately 3×
TABLE IV

THE STORAGE OVERHEAD FOR DIFFERENT PDS TECHNIQUES. NOTE THAT
THE VALUE IS NOT EXACT AS IT HAS BEEN ESTIMATED BASED ON SOME

TYPICAL CASES.

other PDS systems also suffer from such a degradation. This
performance degradation mostly comes from the additional
operations needed to hide the access on the hidden sensitive
data in order to mitigate the strong multi-snapshot adversary.
Although HiPDS cannot improve the I/O throughout on the
hidden data, it is still advantageous, as it is storage hardware-
independent, and does not affect the I/O throughput on the
public data.
The storage overhead for hiding sensitive data. To plausibly
deny the existence of sensitive data, we need to store the
cover data, the random number for the cover data, as well
as the hash value. In other words, to store a sensitive file with
size |S|, the storage is 3|S|. We argue that the high storage
overhead for a PDS system is pretty common due to the nature
of plausible hiding (evidence can be found in Table IV). For
example, the steganographic file system [8], [50] needs to
maintain multiple replicas of the sensitive data to mitigate data
lost, e.g., to achieve 0.005% data loss rate, 3 copies of the
sensitive data need to be maintained in the disk; the hidden
volume technique [21], [41], [64] needs to fill the entire disk
with randomness, and only half of the storage can be used
to stored sensitive data; the WOM code-based technique [25]
needs to use 5 bits to hide 1 bit when using (3,5) WOM code;
the ORAM-based solutions [14], [19] require at least 100%
extra storage as half of the disk is required to be free [23].
The impact of k and g on the performance of HiPDS. The
aforementioned experimental results were obtained by fixing
both the k and g as 2. When k is increased, for fixed q, p will
be larger. In other words, the hash value will be computed in
a larger field, and the computation for the encoding would be
increased. However, the computation required for the decoding
will not be effected, as q is fixed. When g is increased, for
fixed q and p, the computation required for computing the hash
value will be larger, hence the computation for the encoding
would be larger. However, the computation required for the
decoding would not be affected, as q is fixed.

VII. RELATED WORK

Steganographic file system-based PDSes. Steganographic
file systems [8], [50] hided the secret data among the random-
ness initially filled in the entire disk. To avoid data loss, a few
copies of the hidden sensitive data should be be maintained
across the disk. Such a PDS design can only defend against
a single-snapshot adversary, as the multi-snapshot adversary
can compare different snapshots and identify the update on
the sensitive data hidden in the randomness.
Hidden volume-based PDSes. TrueCrypt [67] and Ver-
aCrypt [29] introduced a hidden volume which can be used to
stored hidden sensitive data. The hidden volume is encrypted
using a true key and placed to the end of the disk which
has been filled entirely with random data initially. Both True-
Crypt and the VeraCrypt were designed for HDDs and can
only defend against the single-snapshot adversary. However,
they are vulnerable to the multi-snapshot adversary who can
compare snapshots and be aware of the data dynamics on
the hidden volume. Mobiflage [64], MobiHydra [73], Mo-
bipluto [20], [21] extended the hidden volume technique to
Android devices. However, they are deployed on the block
layer and may suffer from the single-snapshot adversary who
can have access to underlying flash memory. DEFTL [41]
fixed the aforementioned deniability compromises by incor-
porating the hidden volume into the flash translation layer,
eliminating any low-layer traces which may cause deniability
compromises. CrossPDE [27] extends DEFTL by separating
PDS functionality and placing them in different layers of a
storage system to achieve security, efficiency and usability.
Both the DEFTL and the CrossPDE can defend against the
single-snapshot adversary for mobile devices. Still, they cannot
defend against the multi-snapshot adversary due to the use of
the hidden volume technique.
ORAM-based PDSs. To obfuscate the writes of the hidden
sensitive data, HIVE [14] and DataLair [19] incorporated
write-only oblivious random access machine (ORAM). They
can defend against the multi-snapshot adversary as they hide
the pattern of access when writing the hidden sensitive data.
PD-DM [23] improved [14], [19] by replacing randomization
of ORAM via a canonical form which allows most of writes
to be performed sequentially.
Flash hardware-based PDSes. PEARL [25] leveraged the
write-once memory (WOM) code to hide sensitive data in
the flash memory. It can defend against the multi-snapshot
adversary by encoding hidden bits in the same physical loca-
tions as the public bits, utilizing the write-once memory which
fits the nature of flash memory. Another work, INFUSE [24],
attempted to defend against the multi-snapshot adversary by
hiding the sensitive data into the hardware side-channel of
flash memory. INFUSE requires that the flash memory hard-
ware has the ability to program and operate the same cell
as an SLC or an MLC, which could significantly limit its
applications.
Other PDSes. All the aforementioned PDSes only concern on
the deniability compromises in the external storage. The PDS
designed by Liao et al. [48] is the sole one which concerns on
the deniability compromises in the internal memory using the

12

TEE. However, their work is specifically designed for mobile
devices which use flash memory as external storage and is
therefore not storage hardware independent. In addition, it is
unclear how the TrustZone secure world can have direct access
to the external storage in their design and, going through the
untrusted OS to access the external storage still suffers from
deniability compromises.

VIII. CONCLUSION

In this work, we have designed a storage hardware-
independent plausibly deniable storage system to defend
against a multi-snapshot adversary. By leveraging chameleon
hash, HiPDS can plausibly hide the sensitive data via the
non-sensitive cover data. In this way, every access of hidden
sensitive data can be plausibly denied as that of the cover data.
TEE is also leveraged to plausibly hide the sensitive data in the
memory. Security analysis and experimental evaluation show
that HiPDS can ensure plausible deniability with an acceptable
computational overhead.

REFERENCES

[1] AMD Secure Encrypted Virtualization (SEV). https://developer.amd.
com/sev/.

[2] GitHub - ayeks/SGX-hardware: This is a list of hardware which supports
Intel SGX - Software Guard Extensions. https://github.com/ayeks/
SGX-hardware.

[3] HiPDS: A Storage Hardware-Independent Plausibly Deniable Storage
System. https://ieeexplore.ieee.org/abstract/document/10336827.

[4] Memory encryption: AMD SME, TSME and SEV. https://mricher.fr/
post/amd-memory-encryption/.

[5] Openssl 1.1.1 series release notes. https://www.openssl.org/news/
openssl-1.1.1-notes.html.

[6] Rising to the Challenge - Data Security with In-
tel Confidential Computing. https://community.
intel.com/t5/Blogs/Products-and-Solutions/Security/
Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/
1353141.

[7] What is Confidential Computing? — TechRepublic. https://www.
techrepublic.com/article/confidential-computing/.

[8] Ross Anderson, Roger Needham, and Adi Shamir. The steganographic
file system. In International Workshop on Information Hiding, pages
73–82. Springer, 1998.

[9] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea
Kissner, Zachary Peterson, and Dawn Song. Provable data possession at
untrusted stores. In Proceedings of the 14th ACM CCS, pages 598–609,
2007.

[10] Giuseppe Ateniese and Breno de Medeiros. Identity-based chameleon
hash and applications. In International Conference on Financial Cryp-
tography, pages 164–180. Springer, 2004.

[11] Giuseppe Ateniese, Bernardo Magri, Daniele Venturi, and Ewerton
Andrade. Redactable blockchain–or–rewriting history in bitcoin and
friends. In 2017 IEEE European symposium on security and privacy,
pages 111–126. IEEE, 2017.

[12] Austen Barker, Staunton Sample, Yash Gupta, Anastasia McTaggart,
Ethan L Miller, and Darrell DE Long. Artifice: A deniable stegano-
graphic file system. In 9th USENIX Workshop on Free and Open
Communications on the Internet (FOCI 19), 2019.

[13] Matt Bishop. Introduction to computer security. 2005.
[14] Erik-Oliver Blass, Travis Mayberry, Guevara Noubir, and Kaan Onarli-

oglu. Toward robust hidden volumes using write-only oblivious ram. In
Proceedings of the 2014 ACM CCS, pages 203–214. ACM, 2014.

[15] Hristo Bojinov, Daniel Sanchez, Paul Reber, Dan Boneh, and Patrick
Lincoln. Neuroscience meets cryptography: designing crypto primitives
secure against rubber hose attacks. In 21st USENIX Security Symposium,
pages 129–141, 2012.

[16] Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso
Frassetto, Kari Kostiainen, and Ahmad-Reza Sadeghi. Dr. sgx: Auto-
mated and adjustable side-channel protection for sgx using data location
randomization. In Proceedings of 2019 ACSAC, pages 788–800, 2019.

[17] Jan Camenisch, David Derler, Stephan Krenn, Henrich C Pöhls, Kai
Samelin, and Daniel Slamanig. Chameleon-hashes with ephemeral
trapdoors. In IACR International Workshop on Public Key Cryptography,
pages 152–182. Springer, 2017.

[18] Rein Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deni-
able encryption. In Proceedings of CRYPTO, pages 90–104. Springer,
1997.

[19] Anrin Chakraborti, Chen Chen, and Radu Sion. Datalair: Efficient block
storage with plausible deniability against multi-snapshot adversaries.
Proceedings on Privacy Enhancing Technologies, 3:175–193, 2017.

[20] Bing Chang, Yao Cheng, Bo Chen, Fengwei Zhang, Wen-Tao Zhu,
Yingjiu Li, and Zhan Wang. User-friendly deniable storage for mobile
devices. computers & security, 72:163–174, 2018.

[21] Bing Chang, Zhan Wang, Bo Chen, and Fengwei Zhang. Mobipluto:
File system friendly deniable storage for mobile devices. In Proceedings
of the 31st Annual Computer Security Applications Conference, pages
381–390. ACM, 2015.

[22] Bing Chang, Fengwei Zhang, Bo Chen, Yingjiu Li, Wen-Tao Zhu,
Yangguang Tian, Zhan Wang, and Albert Ching. Mobiceal: Towards
secure and practical plausibly deniable encryption on mobile devices.
In Proceedings of DSN, pages 454–465. IEEE, 2018.

[23] Chen Chen, Anrin Chakraborti, and Radu Sion. Pd-dm: An efficient
locality-preserving block device mapper with plausible deniability. Proc.
Priv. Enhancing Technol., 2019(1):153–171, 2019.

[24] Chen Chen, Anrin Chakraborti, and Radu Sion. Infuse: Invisible
plausibly-deniable file system for nand flash. Proc. Priv. Enhancing
Technol., 2020(4):239–254, 2020.

[25] Chen Chen, Anrin Chakraborti, and Radu Sion. {PEARL}: Plausibly de-
niable flash translation layer using {WOM} coding. In 30th {USENIX}
Security Symposium ({USENIX} Security 21), 2021.

[26] Niusen Chen, Bo Chen, and Weisong Shi. The block-based mobile pde
systems are not secure-experimental attacks. In Applied Cryptography in
Computer and Communications: Second EAI International Conference,
AC3 2022, Virtual Event, May 14-15, 2022, Proceedings, pages 139–
152. Springer, 2022.

[27] Niusen Chen, Bo Chen, and Weisong Shi. A cross-layer plausibly
deniable encryption system for mobile devices. In Security and Pri-
vacy in Communication Networks: 18th EAI International Conference,
SecureComm 2022, Virtual Event, October 2022, Proceedings, pages
150–169. Springer, 2023.

[28] Tsu-Wu J Chou and George E Collins. Algorithms for the solution of
systems of linear diophantine equations. SIAM Journal on computing,
11(4):687–708, 1982.

[29] CodePlex. Veracrypt ssd. https://veracrypt.codeplex.com/, 2017.
[30] United States Congress. Health Insurance Portability and Accountability

Act. Retrieved March 18, 2023, from http://www.hhs.gov/ocr/privacy/
index.html, 1996.

[31] Victor Costan and Srinivas Devadas. Intel sgx explained. IACR Cryptol.
ePrint Arch., 2016(86):1–118, 2016.

[32] C Chris Erway, Alptekin Küpçü, Charalampos Papamanthou, and
Roberto Tamassia. Dynamic provable data possession. ACM Transac-
tions on Information and System Security (TISSEC), 17(4):1–29, 2015.

[33] Wendi Feng, Chuanchang Liu, Zehua Guo, Thar Baker, Gang Wang,
Meng Wang, Bo Cheng, and Junliang Chen. Mobigyges: A mobile
hidden volume for preventing data loss, improving storage utilization,
and avoiding device reboot. Future Generation Computer Systems, 2020.

[34] Lukas Giner, Andreas Kogler, Claudio Canella, Michael Schwarz, and
Daniel Gruss. Repurposing segmentation as a practical lvi-null mitiga-
tion in sgx. In USENIX Security Symposium, 2022.

[35] Peter Gutmann. Secure deletion of data from magnetic and solid-state
memory. In Proceedings of the Sixth USENIX Security Symposium, San
Jose, CA, volume 14, pages 77–89, 1996.

[36] Peter Gutmann. Data remanence in semiconductor devices. In 10th
USENIX Security Symposium (USENIX Security 01), 2001.

[37] Jin Han, Meng Pan, Debin Gao, and HweeHwa Pang. A multi-user
steganographic file system on untrusted shared storage. In Proceedings
of the 26th Annual Computer Security Applications Conference, pages
317–326, 2010.

[38] Seung-Kyun Han and Jinsoo Jang. Mytee: Own the trusted execution
environment on embedded devices. In NDSS, 2023.

[39] Shuangxi Hong, Chuanchang Liu, Bingfei Ren, Yuze Huang, and
Junliang Chen. Personal privacy protection framework based on hidden
technology for smartphones. IEEE Access, 5:6515–6526, 2017.

[40] Intel. Intel trusted execution technology. https://i.dell.com/sites/content/
business/smb/en/Documents/Trusted-Execution-Technology.pdf.

13

[41] Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. Deftl: Implementing
plausibly deniable encryption in flash translation layer. In Proceedings
of the 24th ACM conference on Computer and communications security.
ACM, 2017.

[42] Amin Kharaz, Sajjad Arshad, Collin Mulliner, William Robertson, and
Engin Kirda. {UNVEIL}: A {Large-Scale}, automated approach to
detecting ransomware. In 25th USENIX security symposium (USENIX
Security 16), pages 757–772, 2016.

[43] Hugo Krawczyk and Tal Rabin. Chameleon hashing and signatures.
1998.

[44] Unsung Lee and Chanik Park. Softee: Software-based trusted execution
environment for user applications. IEEE Access, 8:121874–121888,
2020.

[45] Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin. Crossline: Breaking”
security-by-crash” based memory isolation in amd sev. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 2937–2950, 2021.

[46] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang
Cheng. {CIPHERLEAKS}: Breaking constant-time cryptography on
{AMD}{SEV} via the ciphertext side channel. In 30th USENIX Security
Symposium (USENIX Security 21), pages 717–732, 2021.

[47] Hongliang Liang, Mingyu Li, Yixiu Chen, Lin Jiang, Zhuosi Xie, and
Tianqi Yang. Establishing trusted i/o paths for sgx client systems
with aurora. IEEE Transactions on Information Forensics and Security,
15:1589–1600, 2019.

[48] Jinghui Liao, Bo Chen, and Weisong Shi. Trustzone enhanced plausibly
deniable encryption system for mobile devices. In 2021 IEEE/ACM
Symposium on Edge Computing (SEC), pages 441–447. IEEE, 2021.

[49] Mitsuru Matsui and Atsuhiro Yamagishi. A new method for known
plaintext attack of feal cipher. In Workshop on the Theory and
Application of of Cryptographic Techniques, pages 81–91. Springer,
1992.

[50] Andrew D McDonald and Markus G Kuhn. Stegfs: A steganographic
file system for linux. In Information Hiding, pages 463–477. Springer,
2000.

[51] Sonia Ben Mokhtar, Antoine Boutet, Pascal Felber, Marcelo Pasin,
Rafael Pires, and Valerio Schiavoni. X-search: revisiting private web
search using intel sgx. In Proceedings of the 18th ACM/IFIP/USENIX
Middleware Conference, pages 198–208, 2017.

[52] Kathleen Moriarty, Burt Kaliski, and Andreas Rusch. Pkcs# 5:
Password-based cryptography specification version 2.1. Technical report,
2017.

[53] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel
Gruss, and Frank Piessens. Plundervolt: Software-based fault injection
attacks against intel sgx. In 2020 IEEE S&P, pages 1466–1482. IEEE,
2020.

[54] HweeHwa Pang, K-L Tan, and Xuan Zhou. Stegfs: A steganographic
file system. In Proceedings of 2003 ICDE, pages 657–667. IEEE, 2003.

[55] Timothy M Peters, Mark A Gondree, and Zachary NJ Peterson. DEFY:
A deniable, encrypted file system for log-structured storage. In NDSS,
2015.

[56] Travis Peters, Reshma Lal, Srikanth Varadarajan, Pradeep Pappachan,
and David Kotz. Bastion-sgx: Bluetooth and architectural support for
trusted i/o on sgx. In Proceedings of the 7th International Workshop
on Hardware and Architectural Support for Security and Privacy, pages
1–9, 2018.

[57] Yanjing Ren, Jingwei Li, Zuoru Yang, Patrick PC Lee, and Xiaosong
Zhang. Accelerating encrypted deduplication via {SGX}. In 2021
USENIX Annual Technical Conference (USENIX ATC 21), pages 957–
971, 2021.

[58] UN Roy, RP Sah, AK Sah, and SK Sourabh. Linear diophantine equa-
tion: Solution and applications. International Journal of Mathematics
Trends and Technology (IJMTT), 65(1), 2019.

[59] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah.
Trusted execution environment: what it is, and what it is not. In 2015
IEEE Trustcom/BigDataSE/ISPA, volume 1, pages 57–64. IEEE, 2015.

[60] U.S. Senator Paul Sarbanes and U.S. Representative Michael G. Oxley.
Sarbanes-Oxley Act. Retrieved March 18, 2023, from https://www.
govinfo.gov/content/pkg/COMPS-1883/pdf/COMPS-1883.pdf, 2002.

[61] Michael Schwarz, Samuel Weiser, and Daniel Gruss. Practical enclave
malware with intel sgx. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 177–196.
Springer, 2019.

[62] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice,
and Stefan Mangard. Malware guard extension: Using sgx to conceal
cache attacks. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, pages 3–24. Springer, 2017.

[63] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read Sprabery,
Josep Torrellas, and Christopher W Fletcher. Microscope: Enabling
microarchitectural replay attacks. In 2019 ACM/IEEE 46th Annual
International Symposium on Computer Architecture (ISCA), pages 318–
331. IEEE, 2019.

[64] Adam Skillen and Mohammad Mannan. On implementing deniable
storage encryption for mobile devices. In 20th Annual Network and
Distributed System Security Symposium, NDSS 2013, San Diego, Cali-
fornia, USA, February 24-27, 2013.

[65] Florin-Alexandru Stancu, Dumitru Cristian Trancă, and Mihai Chiroiu.
Tio-secure input/output for intel sgx enclaves. In 2019 International
Workshop on Secure Internet of Things (SIOT), pages 1–9. IEEE, 2019.

[66] Ying Sun, Jiwen Chai, Huihui Liang, Jianbing Ni, and Yong Yu. A
secure and efficient e-cheque protocol from chameleon hash function.
In 5th International Conference on Intelligent Networking and Collab-
orative Systems. IEEE, 2013.

[67] TrueCrypt. Free open source on-the-fly disk encryption software.version
7.1a. Project website: http://www.truecrypt.org/ , 2012.

[68] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi, Marina
Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and
Frank Piessens. Lvi: Hijacking transient execution through microarchi-
tectural load value injection. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 54–72. IEEE, 2020.

[69] Samuel Weiser and Mario Werner. Sgxio: Generic trusted i/o path for
intel sgx. In Proceedings of the seventh ACM on conference on data
and application security and privacy, pages 261–268, 2017.

[70] Yankai Xie, Chi Zhang, Lingbo Wei, Qingtao Wang, and Zhe Yang. A
secure and efficient bitcoin payment channel using intel sgx. In ICC
2021-IEEE International Conference on Communications, pages 1–6.
IEEE, 2021.

[71] Junpeng Xu, Haixia Chen, Xu Yang, Wei Wu, and Yongcheng Song.
Verifiable image revision from chameleon hashes. Cybersecurity, 4(1):1–
13, 2021.

[72] Shengmin Xu, Jianting Ning, Jinhua Ma, Guowen Xu, Jiaming Yuan, and
Robert H Deng. Revocable policy-based chameleon hash. In European
Symposium on Research in Computer Security, pages 327–347. Springer,
2021.

[73] Xingjie Yu, Bo Chen, Zhan Wang, Bing Chang, Wen Tao Zhu, and
Jiwu Jing. Mobihydra: Pragmatic and multi-level plausibly deniable
encryption storage for mobile devices. In Proceedings of ISC 2014,
pages 555–567, 2014.

[74] Wenjia Zhao, Kangjie Lu, Yong Qi, and Saiyu Qi. Mptee: Bringing
flexible and efficient memory protection to intel sgx. In Proceedings of
the Fifteenth European Conference on Computer Systems, pages 1–15,
2020.

