CS 5472 - Advanced Topics in Computer Security

Topic 5: Deniable Encryption (2)

Spring 2019 Semester Instructor: Bo Chen <u>bchen@mtu.edu</u> <u>https://cs.mtu.edu/~bchen</u> <u>https://snp.cs.mtu.edu</u>

Review: Use Hidden Volume to Mitigate Coercive Attacks

• A coercive attacker can enforce the victim to disclose the decryption key

TELL ME YOUR KEY!!!

Mobiflage is a hidden volume-based PDE system which \bullet can mitigate coercive attacks for mobile devices secret offset hidden volume public volume (public data) random (encrypted with true key) (encrypted with decoy key) noise storage medium

Deniability Compromise 1: The Attacker Can Have Access to The Disk Multiple Times

- By having multiple snapshots on the storage medium, the attacker can compromise deniability
 - Compare different snapshots and can observe the changes/modifications over the hidden volume, which was not supposed to happen
 - Hidden volume is hidden in the empty space of the public volume

storage

medium

Deniability Compromise 2: Underlying Flash Memory

- Built on the block device layer
- Neglect the special nature of flash
- Unexpected ``traces'' of hidden sensitive data due to handling the special nature of flash memory

NAND Flash is Usually Used as Storage Media

How to Program/Write Data to Flash Memory

Special Characteristics of NAND Flash

- Update unfriendly
 - Over-writing a page requires first erasing the entire block (erase-before-write)
 - Write is performed on basis of pages (e.g., 4KB), but erase is performed on basis of blocks (e.g., 128KB)

• Over-write may cause significant write amplification

Special Characteristics of NAND Flash (cont.)

- Support a finite number of program-erase (P/E) cycles
 - Each flash block can only be programmed/erased for a limited number of times (e.g., 10K)
 - Data should be placed evenly across flash (wear leveling)

How to Manage NAND Flash?

- Flash-specific file systems, which can handle the special characteristics of NDND flash
 - YAFFS/YAFFS2, UBIFS, F2FS, JFFS/JFFS2
- Flash translation layer (FTL) flash firmware embedded into the flash storage device, which can handle the special characteristics of NAND flash and emulate the flash storage as a regular block device
 - SSD
 - USB
 - SD
 - MMC

Flash Translation Layer (FTL)

- FTL usually provides the following functionality:
- ✓Address translation
- ✓ Garbage collection
- ✓ Wear leveling
- ✓ Bad block management

Address translation:

- ✓ Translate address between block addresses and flash memory addresses
- ✓ Need to keep track of mappings between Logical Block Address (LBA) and Physical Block Address (PBA)

Garbage collection:

- ✓ Flash memory is update unfriendly
- ✓ Not prefer in-place update, but prefer out-of-place update
- The blocks storing obsolete data should be reclaimed periodically by garbage collection

Wear leveling:

- ✓ Each flash block can be programmed/erased for a limited number of times
- ✓ Distribute writes evenly across the flash to prolong its lifetime

Bad block management:

- Regardless how good is the wear leveling, some flash blocks will eventually turn "bad" and cannot reliably store data
- ✓ Bad block management is to manage these bad blocks

New Design Goals of PDE Systems for Mobile Devices

- Defend against a multiple-snapshot adversary
- Preventing deniability compromise in the flash memory by hacking into FTL firmware

Paper Presentation

- DEFTL: Implementing Plausibly Deniable Encryption in Flash Translation Layer
- Presented by Chirag Dave