
The Block-based Mobile PDE Systems Are Not Secure -
Experimental Attacks

Niusen Chen1, Bo Chen∗1, and Weisong Shi2

1Department of Computer Science, Michigan Technological University,
Michigan, United States

2Department of Computer Science, Wayne State University, Michigan,
United States

Abstract

Nowadays, mobile devices have been used broadly to store and process sensitive
data. To ensure confidentiality of the sensitive data, Full Disk Encryption (FDE) is
often integrated in mainstream mobile operating systems like Android and iOS. FDE
however cannot defend against coercive attacks in which the adversary can force the
device owner to disclose the decryption key. To combat the coercive attacks, Plausibly
Deniable Encryption (PDE) is leveraged to plausibly deny the very existence of sensitive
data. However, most of the existing PDE systems for mobile devices are deployed at
the block layer and suffer from deniability compromises.

Having observed that none of existing works in the literature have experimentally
demonstrated the aforementioned compromises, our work bridges this gap by experi-
mentally confirming the deniability compromises of the block-layer mobile PDE sys-
tems. We have built a mobile device testbed, which consists of a host computing
device and a flash storage device. Additionally, we have deployed both the hidden
volume-based PDE and the steganographic file system-based PDE at the block layer
of our testbed and performed disk forensics to assess potential compromises on the raw
NAND flash. Our experimental results confirm it is indeed possible for the adversary
to compromise the block-layer PDE systems when the adversary can have access to the
raw NAND flash in real world. We also discuss practical issues when performing such
attacks in practice.

1 Introduction

Mobile computing devices are widely used in our daily life nowadays and, with their in-
creased use, more and more sensitive data are stored and processed in the mobile devices.

∗Corresponding author. bchen@mtu.edu

1



Therefore, it turns to become an urgent need of protecting those sensitive data, and one of
the most critical data security issues is confidentiality. A straightforward approach to protect
data confidentiality is to use encryption. Currently, Full Disk Encryption (FDE) has been
deployed to the mainstream mobile operating systems including Android [1] and iOS [8].
In FDE, encryption and decryption are completely transparent to users. Without the key,
the attacker cannot obtain any knowledge about the original sensitive data. However, FDE
cannot defend against a novel coercive attack in which the attacker can force the device
owner to disclose the key, and decrypt the ciphertext to obtain the original sensitive data.
For example, a journalist or a human rights worker [34, 15] who is working in a country of
conflict or oppression, has captured some sensitive evidence of atrocities and tries to cross the
border; to protect the evidence, he/she encrypts the evidence; the border inspector however,
may be aware of the ciphertext and force the journalist to disclose the decryption key.

Plausibly Deniable Encryption (PDE) can be used to combat coercive attacks. In PDE,
the plaintext is encrypted with a decoy key and a true key. When decrypting the cipher
using the decoy key, we will obtain a decoy message and when decrypting the cipher using
the true key, we will obtain the true message. Upon being coerced by the attacker, the
device owner can only disclose the decoy key and keep the true key secret. In this way, the
sensitive data can be protected against the coercive attackers as the attackers cannot notice
the existence of the hidden sensitive data. Following the concept of PDE, a large number of
PDE systems [31, 32, 34, 15, 30, 26, 14, 16, 23, 18, 19, 20, 21] have been designed for mobile
devices. In general, the existing mobile PDE systems can be divided into three categories:
C1) block-layer PDE systems [31, 32, 34, 15, 14, 16, 23]; C2) flash translation layer (FTL)
PDE systems [26, 20]; and C3) deniability aware flash file systems [30, 19]. A majority of the
existing mobile PDE systems belong to the category C1 which deploys PDE on the block
layer. The reason is that deploying the PDE on the block layer could be achieved much
more easily, resulting in a much better usability. However, the block-layer PDE systems are
insecure, because: the hidden sensitive data will leave special traces in the underlying flash
memory and such traces cannot be removed by the block-layer PDEs; by having access to the
raw flash memory, the adversary may compromise the deniability [26]. The compromises have
been analyzed theoretically by DEFTL [26], but none of the existing works have confirmed
such compromises experimentally. This work thus aims to bridge this gap by conducting
the first experimental study on understanding the deniability compromises of the existing
block-layer PDE systems.
Comparison with DEFTL. Our work is different from that of the DEFTL [26] in a
few aspects: First, DEFTL theoretically analyzes the potential deniability compromises
when deploying the PDE on the block device layer. However, our work experimentally
validates the deniability compromises in real-world devices. Especially, we have created a
mobile device testbed which includes a host computing device (ARM architecture) and a
self-made flash-based block device (using an open-source flash controller and a cheap USB
development prototype board). This self-built mobile device follows the architecture of
mainstream mobile devices in real world. We then deploy a few representative block-based
PDE systems in our testbed, and perform forensic analysis over the raw NAND flash to study

2



the deniability compromises. Second, DEFTL only focuses on the deniability compromises on
the PDE systems which use hidden volume technique, but our work assesses both the hidden
volume-based and the steganographic file system-based PDE. Third, we have identified extra
deniability compromises which have not been discovered in DEFTL.

2 Background

2.1 Flash Memory

Flash memory especially NAND flash has been used broadly as the external storage of
mobile computing devices nowadays. Flash memory usually consists of blocks, and each
block consists of pages. Typically, each flash block is a few hundreds of kilobytes in size
and each page is a few kilobytes in size. Compared to conventional hard disk drives (HDD),
flash memory has a few different features: 1) The unit of a read/write operation is a page,
but the unit of an erase operation is a block. 2) A flash page needs to be erased before
it can be programmed. 3) Due to the unique features of 1) and 2), the in-place update
in flash memory would be expensive. Therefore, the flash storage typically uses an out-of-
place instead of in-place update strategy [24]. 4) Each block in the flash memory can only
be programmed/erased for a limited number of times and, therefore, programmings and
erasures should be distributed evenly across the entire flash to prolong the service life.

2.2 Flash Translation Layer

To manage flash memory, we can use a flash-specific file system like YAFFS or JFFS. How-
ever, the flash-specific file systems are rarely used in mobile computing devices today. In-
stead, a flash translation layer (FTL) is incorporated into the flash storage media (e.g., SD
cards, UFS cards, MMC cards) to transparently handle the unique nature of NAND flash
hardware, so that the flash storage media can expose a block access interface externally and
the traditional block-based file systems can be deployed. The core functions implemented in
the FTL include garbage collection, wear leveling, and bad block management.
Garbage collection. As the flash storage media adopt the out-of-place update strategy,
the flash pages storing old data may be invalidated. Garbage collection is typically used
to reclaim those invalid pages. The garbage collection usually works as follows: The FTL
selects a victim block which has the largest number of invalid pages. It then copies data
stored in valid pages in the victim block to an empty block, and erases the victim block.
Wear leveling. Each flash block only supports a limited number of program/erase (P/E)
cycles. The main purpose of wear leveling is to distribute P/E cycles evenly across the entire
flash. There are a lot wear leveling strategies including static wear leveling and dynamic
wear leveling. A fundamental idea is to swap hot and cold data, so that the hot data will be
relocated to those blocks with least P/E cycles and the cold data will be relocated to those
blocks with most P/E cycles.
Bad block management. Over time, a flash block may turn “bad” and cannot be used to

3



Figure 1: The hidden volume-based PDE technique.

reliably store data, as there were too many P/E cycles performed on this block in the past.
Therefore, the FTL needs to keep track of those bad blocks and prevents them from being
used to store data. Typically, a bad block table can be used to keep track of bad blocks. If
a block turns bad, the FTL will copy data from this block to an empty block and add this
bad block to the bad block table.

2.3 Plausibly Deniable Encryption

Plausibly deniable encryption can be leveraged to combat coercive attacks. Typically, there
are two techniques which can be used to implement the PDE system, namely, the hidden
volume technique [6, 7] and the steganographic file system [9, 28].

For the hidden volume technique (see Figure 1), the entire disk is filled with random
data initially. Two volumes — a public volume and a hidden volume — will be introduced.
Correspondingly, two keys — a decoy key and a true key— are selected. The public volume
is encrypted via the decoy key and placed across the entire disk, and the hidden volume is
encrypted with the true key and placed to the end of the disk starting from a secret offset
(derived from the true key). Upon being coerced, the victim will simply disclose the decoy
key. Via the decoy key, the attacker can decrypt the public volume, but will not notice the
existence of the hidden volume stored stealthily among the random data.

One implementation of the steganographic file system is to fill the disk with random data
initially, and to encrypt and to hide the sensitive data at a secret location which can be
derived from a secret key. To prevent loss of sensitive data, multiple copies of sensitive data
are stored in multiple locations across the disk.

3 Model and Assumptions

System model. We consider a mobile computing device which is equipped with flash mem-
ory (e.g., UFS cards, eMMC cards, microSD cards, etc) as the external storage. The storage
architecture of main-stream mobile devices is shown in Figure 2. A mobile user directly
communicates with apps (e.g., a PDF viewer app) running at the application layer. The
OS/file system will manage storage hardware and provide system calls for the applications

4



Figure 2: The storage architecture of main-stream mobile computing devices

to access the data stored at the storage hardware. The underlying flash memory storage is
typically used in the form of a block device. The FTL will handle special nature of flash
memory, exposing a block access interface externally.
Adversarial model. We assume the adversary can capture both the victim and his/her
mobile device, and coerce the owner to disclose the decryption key. The adversary is rationale
and will stop coercing the user once he/she believes that the decryption key is disclosed [31,
15, 16, 26]. Using the disclosed key, the adversary will play with the mobile devices to
compromise the PDE. In addition, the adversary can extract the raw image from the flash
storage equipped with the victim device and obtain the hardware parameters (e.g., page
size and block size) of the underlying flash memory chips. The adversary can then perform
forensic analysis on the raw image — with the help of the disclosed key — to identify the
existence of PDE.

4 Experimentally Attacking The Block-layer PDE Sys-

tems

The hidden volume technique and the steganographic file system (Sec. 2.3) are two major
techniques which have been leveraged to implement the PDE system at the block layer. We
therefore focus on attacking those two types of PDE systems. For each type of PDE systems,
we first deploy a representative PDE implementation on a self-built mobile device testbed,
and then perform forensic analysis to identify any potential deniability compromises. We
mainly concentrate on the deniability compromises in the underlying storage medium, which
is typically NAND flash for mobile devices.

4.1 Experimental Setup

A challenge faced in our experiment was that, almost every commercially available mobile
device (smartphones, tablets, smart watches, or the recent IoT devices like smart home
assistants) uses a well encapsulated flash-based block device, e.g., UFS cards, eMMC, mi-

5



Figure 3: A self-made mobile device testbed for our experiment. Firefly AIO-3399J is the
host computing device and LPC-H3131 (with flash controller) is the flash-based block device.

croSD cards. To facilitate our attacks, we have built a mobile device testbed, which consists
of a flash-based block device and a host computing device (Figure 3). The flash-based
block device was built by porting [33] an open-sourced flash controller OpenNFM [22] to a
USB header development prototype board LPC-H3131 [3] (Major hardware: ARM9 32-bit
ARM926EJ-S, 180Mhz, 32MB RAM, and 512MB NAND flash. The flash memory consists
of 128KB blocks, and each block consists of 2KB pages). The host computing device was an
embedded development board, Firefly AIO-3399J (Major hardware: Six-Core ARM 64-bit
processor, 4GB RAM). The Firefly AIO-3399J was managed by Linux kernel 4.4.194. This
mobile device testbed shares a common architecture with mainstream mobile devices in real
world.

We then deployed a block-based PDE system in the host computing device. For the
hidden volume-based PDEs, we deployed VeraCrypt [7], a fork of the discontinued TrueCrypt
project. Note that a large number of PDE systems deployed on the block layer (including
PDE systems [6, 11] designed for PCs as well as PDE systems [31, 32, 34, 15, 14, 16] designed
for mobile devices) have utilized the hidden volume technique, and our attack can be applied
to most of them. For the steganographic file systems, we deployed stegfs [5], a recent open-
source implementation of steganographic file systems [9, 28, 29] in user space1. For each
deployed PDE system, we analyzed the raw NAND flash to identify the potential PDE
compromises.

4.2 Experimental Attacks

Experimentally Attacking the Hidden Volume-based PDEs. We deployed VeraCrypt [7]
in the host computing device, and manually created both a public and a hidden volume via
VeraCrypt. The public volume occupies the entire disk (i.e., the flash-based block device
built by porting OpenNFM to LPC-H3131) and the hidden volume is 200MB in size. The

1Note that the original implementation of the steganographic file system [2, 9, 28] was done in 1999 for
Ext2, and has not been updated since then.

6



file system deployed in the public volume was exFAT, which writes data sequentially from
the beginning of the disk to avoid overwriting the hidden volume stored stealthily in the
second half of the disk. We also deployed exFAT in the hidden volume. We performed three
tests to simulate behaviors of a device owner as follows:
Test #1: We entered the public mode, and wrote non-sensitive data to the public volume.
The size of the non-sensitive data being written is small (i.e., the size is in the magnitude of
a few kilobytes, and should be always smaller than the size of a flash block). We then quit
the public mode, entered the hidden mode, and wrote a small amount of sensitive data to
the hidden volume. The size of the sensitive data being written is similar to the size of the
non-sensitive data being written to the public volume. We also repeated the aforementioned
operations a few times. This behavior is reasonable. For instance, the user may write a
short article to the public volume and then store a small secret audio record to the hidden
volume.
Test #2: We entered the public mode and wrote non-sensitive data to the public volume.
The size of the non-sensitive data being written should be large, e.g., always larger than the
size of one flash block. Then, we quit the public mode, entered the hidden mode, and wrote
a small amount of sensitive data to the hidden volume. The size of the sensitive data being
written should be small, e.g., in the magnitude of a few kilobytes which is always smaller
than the size of a flash block. This behavior is reasonable. For instance, the user may store
a large video to the public volume and then store a small secret audio record to the hidden
volume.
Test #3: We entered the hidden mode and wrote a small file (i.e., file 1) to the hidden
volume. The size of file 1 is a few kilobytes (e.g., 3 KBs). We then modified a few randomly
selected locations in file 1 and saved it. Next, we wrote a large file (i.e., file 2) to the hidden
volume. The size of file 2 is more than 128 kilobytes. This behavior is reasonable. For
instance, the user may create a small secret document in the hidden mode and modify it
later; the user may then create another secret document which is large in size.

After each test, we analyzed the corresponding flash memory image. Note that the
coercive adversary should have access to the decoy key.

From the image obtained after running test #1, we have identified the first type of special
flash blocks, i.e., “special block 1” in Figure 4. Such a block is completely filled with random
data, but a portion of pages among this block cannot be decrypted successfully. Without
the PDE deployed, there are only two possibilities for a block completely filled with random
data: 1) All data stored in it can be decrypted successfully, i.e., the block is filled with public
data. 2) All data stored in it cannot be decrypted successfully, i.e., the block is completely
occupied by random data filled initially. However, with the PDE deployed, some of the pages
in the block are occupied by the hidden data and cannot be decrypted, as we wrote a small
amount of data to the public volume and the hidden volume in turn repeatedly during the
test #1. The existence of “special block 1” indicates the device owner has entered the hidden
mode and committed hidden sensitive data to the external storage before.

From the image obtained after test #2, we have identified the second type of special
blocks, i.e., “special block 2” in Figure 4. Such a block has a few pages in the beginning

7



Figure 4: Special blocks observed in raw NAND flash.

storing random data and the remaining pages filling with all ‘1’ bits; among the random
data, those located in the end cannot be decrypted. Without the PDE deployed, a block is
erased and then partially used by the public data which are all decryptable. However, with
the PDE deployed, some of pages in this block may be used by the hidden data and hence
cannot be decrypted. Especially in our test #2, the hidden data will occupy those pages
before the empty pages (i.e., a page with all ‘1’s) of the block. Therefore, the existence of
“special block 2” also indicates the device owner has committed hidden sensitive data to the
external storage before.

From the image obtained after running test #3, we have identified the third type of
special blocks, i.e., “special block 3” in Figure 4. Such a block is completely filled with
undecryptable random data, but some of them (i.e., in arbitrary locations across the block)
are marked as invalid. A snapshot of a portion of special block 3 is also provided in Figure 5.
This is because: With the PDE deployed, a flash block may have been used by the hidden
volume, and arbitrary pages across the block may have been updated by the user and hence
invalided by the FTL; in addition, the hidden data are encrypted by the true key and cannot
be decrypted via the decoy key. However, Without the PDE deployed, the data being updated
by the user and invalidated by the FTL will be the public data which are decryptable via
the decoy key. Therefore, the existence of “special block 3” indicates the existence of the
hidden volume. Note that the “special block 3” has not been discovered in the literature.
Experimentally Attacking The Steganographic File System-based PDEs. We de-
ployed stegfs [5] in the host computing device. Note that the steganographic file system
works differently from the hidden volume technique that: the file system is initially filled
with randomness and the sensitive data are encrypted via a secret key and stored at random
locations of the entire disk; it also needs to maintain a few copies of the hidden data across
the disk to mitigate loss of hidden sensitive data as the public data may overwrite them over
time. We performed one test to simulate the behavior of a device owner as follows:

We first mounted the FAT file system on the flash device, and wrote a certain amount of

8



Figure 5: A snapshot (portion) of special block 3. Every 4 bits have been converted to the
corresponding hexadecimal digit. In this snapshot, the data stored on page 28 has been
updated and invalidated by the FTL, and the newly updated data are written to page 36.
The data stored in the aforementioned pages are undecryptable.

public non-sensitive data. Then, we manually mounted the steganographic file system, and
wrote a certain amount of sensitive data. This behavior is reasonable. For instance, the user
may first store a few non-sensitive images to the disk via the public file system and then
store some secret documents to the disk using the steganographic file system.

After the test, we extracted the corresponding flash memory image and analyzed it. We
have identified a few special traces due to the existence of the PDE: 1) Trace #1: public data
and random data are interleaving across the entire flash. However, without the existence of
the hidden sensitive data, the distribution of the data across the flash should be public data
followed by random data. This is because: The steganographic file system fills random data
across the entire flash initially and, since the FTL uses log-structured writing, regardless
how the file system writes public data at the upper layer, the FTL will always program
flash blocks from the beginning. Therefore, the observed trace #1 indicates the existence
of the hidden sensitive data. 2) Trace #2: public data and random data share the same
flash block. Figure 6 shows a snapshot we obtained from one flash block after the test,
in which we can observe some of the pages in a flash block store public data which are
semantically meaningful, while some of the pages of the block store random undecryptable
data. However, without the existence of the hidden sensitive data, the distribution of data
in a flash block should be either i) public data, followed by all ‘1’ bits, or ii) all public data.
This is because: Without the existence of hidden data, each time when the FTL writes
public data but cannot find empty pages, it will erase a flash block, and write public data
sequentially from the beginning of the block due to the use of log-structured writing; if any
pages in this block have not been filled, they remain empty and contain all ‘1’s. Therefore,
the observed trace #2 indicates the existence of the hidden sensitive data.

5 Discussion

Assessing the difficulty of performing our attacks. To compromise the deniability by
having access to the raw flash memory, the adversary needs to tackle two issues: 1) how to
extract an image from the NAND flash memory given a victim mobile device, and 2) how
to perform forensic analysis over the raw flash memory data. For the first issue, Breeuwsma

9



Figure 6: A snapshot (portion) from a flash block when attacking the steganographic file
system

et al. [12] introduced a few low-level data acquisition methods for flash memory, including
flasher tools, using an access port commonly used for testing and debugging, etc. Chen
et al. [20] mentioned a method of obtaining raw data from SSDs “by opening the covers
and directly reading the memory chips with cheap off the shelf readers”. For the second
issue, the adversary can use the existing digital forensic tools available on the market (e.g.,
Photorec [4], etc.) or develop new special tools to analyze the captured image.
Implications of our experimental attacks. Our attacks performed in this work confirm
that it is indeed feasible to compromise the block-based PDE systems in practice. Our
results further justify that the deniability compromise in the lower storage medium is indeed
a significant issue and should be considered seriously when designing any future PDE systems
for mobile computing devices. An immediate remediation would be moving the entire PDE
system design to the flash translation layer (FTL) [25, 20] which however, would not be a
good solution as it will impose a large burden on the FTL firmware. In addition, as the
PDE integrated in the FTL firmware is far away from the user applications, making it user
unfriendly. It is unclear how to design a PDE system which is 1) secure (i.e., eliminating
deniability compromises in the flash memory), and 2) keeping the FTL lightweight, and 3)
user-friendly. This is still an open problem in the literature.
Other attacks on the PDE systems. This work only focuses on the single-snapshot attack
in which the adversary is only allowed to have access to the victim device once. A stronger
adversary may conduct the multiple-snapshot attack by periodically accessing to the victim
device [17, 18, 20]. By capturing different snapshots of the external storage over time and
comparing the different snapshots, the adversary will detect changes of the hidden sensitive
data, compromising the deniability. For example, if the hidden volume technique is used,
by comparing different snapshots, the adversary may observe data changes performed in the
space which is claimed empty but actually hides the hidden volume. Some of mitigation
strategies can be accompanying public writes with dummy writes and hiding the sensitive
data into the dummy writes [17, 18], or using the WOM (write-once memory) code to
encode the hidden data in a public cover [20]. In addition, this work only focuses on the

10



deniability compromises in the external storage, but hidden sensitive data may leave traces
in the internal memory, and such traces may be extracted by the adversary by performing
memory forensics [13]. One potential solution is to power-off the device each time after
quitting the hidden mode in which the user can manage the hidden sensitive data. Another
solution could be leveraging trusted execution environments (TEE) like Arm TrustZone [27]
so that the memory used to process the hidden sensitive data can be protected, avoiding
being accessed by the adversary.

6 Related Work

In the following, we summarize the major PDE systems utilizing the hidden volume technique
or the steganographic file systems. A thorough literature review of PDE system can be found
in [35].

6.1 The Hidden Volume-based PDE systems

Skillen et al. proposed Mobiflage [31, 32], which adapts the hidden volume technique to An-
droid devices. There are a few variants of Mobiflage. One variant assumes the existence of an
FAT32 SD card, and deploys the public volume/hidden volume to this SD card. Another vari-
ant releases the aforementioned assumption by using a modified Ext4 file system. Yu et al.
proposed [34] MobiHydra to mitigate a booting-time attack faced by Mobiflage. In addition,
MobiHydra allows the user to switch from the public to the hidden mode without rebooting
the device and supports multi-level deniability. Chang et al. designed Mobipluto [15, 14],
the first file system friendly PDE system which allows any block-based file systems to be
deployed on the public volume, by smartly integrating the hidden volume technique with
thin provisioning. Chang et al. further extended the hidden volume technique to combat
the multi-snapshot adversary by introducing dummy writes on the block layer [16]. Jia et
al. proposed DEFTL [26], the first hidden volume-based PDE system integrated with the
flash translation layer. Barker et al. [10] proposed Artifice, which can meet a few additional
security requirements including: 1) information leakage resistance, and 2) deniable changes,
and 3) deniable software.

6.2 The Steganographic File Systems

Anderson et al. [9] proposed the first steganographic file system. One of their constructions
is to hide the secret data among the randomness. The system maintains several copies of
secret data to reduce the possibility of losing them. Inspired by Anderson et al’s construction,
McDonald et al. [28] designed a more practical as well as efficient steganographic file system,
in which secret files are hidden in unused blocks of a partition which also contains normal
files. Pang et al. [29] proposed StegFS, a new steganographic file system which allows the
user to hide his/her files or directories in a selective manner. A salient advantage of StegFS
is that it can ensure integrity of files while maintaining effective disk utilization. Zhou et

11



al [36] further mitigate the attacks which may compromise the steganographic file system by
analyzing data access of use applications.

7 Conclusion

In this work, we have experimentally confirmed the deniability compromises of the block-
layer PDE systems deployed on the mobile computing devices. Our work conducts the
first experimental attacks by 1) deploying both the hidden volume-based PDE and the
steganographic file system on the block layer of a mobile device testbed, and 2) allowing
the adversary to have access to the flash memory and to perform forensic analysis over the
raw flash memory data. Our results strengthen the necessity of taking care of the deniability
compromises in the lower storage layer when designing any future PDE systems for mobile
devices.

Acknowledgments.

This work was supported by US National Science Foundation under grant number 1928349-
CNS, 1928331-CNS, 1938130-CNS, and 2043022-DGE.

References

[1] Android full disk encryption. Retrieved on April 21, 2022, from https://source.

android.com/security/encryption/.

[2] Index of /~mgk25/stegfs. Retrieved on April 21, 2022, from https://www.cl.cam.

ac.uk/~mgk25/stegfs/.

[3] Lpc-h3131. Retrieved on April 21, 2022, from https://www.olimex.com/Products/

ARM/NXP/LPC-H3131/.

[4] Photorec. Retrieved on March 28, 2022, from https://www.cgsecurity.org/wiki/

PhotoRec.

[5] stegfs. Retrieved on April 21, 2022, from https://sourceforge.net/projects/

stegfs/.

[6] Truecrypt. Retrieved on April 21, 2022, from http://truecrypt.sourceforge.net/.

[7] Veracrypt. Retrieved on April 21, 2022 from https://www.veracrypt.fr/code/

VeraCrypt/.

[8] How to encrypt your devices, 2017. Retrieved on April 21, 2022, from https:

//spreadprivacy.com/how-to-encrypt-devices/.

12



[9] Ross Anderson, Roger Needham, and Adi Shamir. The steganographic file system. In
International Workshop on Information Hiding, pages 73–82. Springer, 1998.

[10] Austen Barker, Yash Gupta, Sabrina Au, Eugene Chou, Ethan L Miller, and Darrell D
Long. Artifice: Data in disguise. In Proceedings of the 36th International Conference
on Massive Storage Systems and Technology (MSST 2020), 2020.

[11] Erik-Oliver Blass, Travis Mayberry, Guevara Noubir, and Kaan Onarlioglu. Toward
robust hidden volumes using write-only oblivious ram. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pages 203–214. ACM,
2014.

[12] Marcel Breeuwsma, Martien De Jongh, Coert Klaver, Ronald Van Der Knijff, and Mark
Roeloffs. Forensic data recovery from flash memory. Small Scale Digital Device Forensics
Journal, 1(1):1–17, 2007.

[13] Mariusz Burdach. Physical memory forensics. USA: Black Hat, 2006.

[14] Bing Chang, Yao Cheng, Bo Chen, Fengwei Zhang, Wen-Tao Zhu, Yingjiu Li, and
Zhan Wang. User-friendly deniable storage for mobile devices. computers & security,
72:163–174, 2018.

[15] Bing Chang, Zhan Wang, Bo Chen, and Fengwei Zhang. Mobipluto: File system friendly
deniable storage for mobile devices. In Proceedings of the 31st annual computer security
applications conference, pages 381–390, 2015.

[16] Bing Chang, Fengwei Zhang, Bo Chen, Yingjiu Li, Wen-Tao Zhu, Yangguang Tian, Zhan
Wang, and Albert Ching. Mobiceal: Towards secure and practical plausibly deniable
encryption on mobile devices. In 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages 454–465. IEEE, 2018.

[17] Bo Chen. Towards designing a secure plausibly deniable system for mobile
devices against multi-snapshot adversaries–a preliminary design. arXiv preprint
arXiv:2002.02379, 2020.

[18] Bo Chen and Niusen Chen. Poster: a secure plausibly deniable system for mobile devices
against multi-snapshot adversaries. In 2020 IEEE Symposium on Security and Privacy
Poster Session, 2020.

[19] Chen Chen, Anrin Chakraborti, and Radu Sion. Infuse: Invisible plausibly-deniable
file system for nand flash. Proceedings on Privacy Enhancing Technologies, 4:239–254,
2020.

[20] Chen Chen, Anrin Chakraborti, and Radu Sion. Pearl: Plausibly deniable flash trans-
lation layer using wom coding. In The 30th Usenix Security Symposium, 2021.

13



[21] Niusen Chen, Bo Chen, and Weisong Shi. Mobiwear: A plausibly deniable encryp-
tion system for wearable mobile devices. In EAI International Conference on Applied
Cryptography in Computer and Communications, pages 138–154. Springer, 2021.

[22] Google Code. Opennfm. Retrieved on April 21, 2022, from https://code.google.

com/p/opennfm/.

[23] Wendi Feng, Chuanchang Liu, Zehua Guo, Thar Baker, Gang Wang, Meng Wang,
Bo Cheng, and Junliang Chen. Mobigyges: A mobile hidden volume for preventing
data loss, improving storage utilization, and avoiding device reboot. Future Generation
Computer Systems, 2020.

[24] Le Guan, Shijie Jia, Bo Chen, Fengwei Zhang, Bo Luo, Jingqiang Lin, Peng Liu, Xinyu
Xing, and Luning Xia. Supporting transparent snapshot for bare-metal malware analysis
on mobile devices. In Proceedings of the 33rd Annual Computer Security Applications
Conference, pages 339–349. ACM, 2017.

[25] Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. Nfps: Adding undetectable secure
deletion to flash translation layer. In Proceedings of the 11th ACM on Asia Conference
on Computer and Communications Security, pages 305–315. ACM, 2016.

[26] Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. Deftl: Implementing plausibly deni-
able encryption in flash translation layer. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 2217–2229, 2017.

[27] Jinghui Liao, Bo Chen, and Weisong Shi. Trustzone enhanced plausibly deniable encryp-
tion system for mobile devices. In 2021 IEEE/ACM Symposium on Edge Computing
(SEC), pages 441–447. IEEE, 2021.

[28] Andrew D McDonald and Markus G Kuhn. Stegfs: A steganographic file system for
linux. In International Workshop on Information Hiding, pages 463–477. Springer, 1999.

[29] HweeHwa Pang, K-L Tan, and Xuan Zhou. Stegfs: A steganographic file system. In
Proceedings 19th International Conference on Data Engineering (Cat. No. 03CH37405),
pages 657–667. IEEE, 2003.

[30] Timothy M Peters, Mark A Gondree, and Zachary NJ Peterson. DEFY: A deniable,
encrypted file system for log-structured storage. In 22th Annual Network and Distributed
System Security Symposium, NDSS, 2015.

[31] Adam Skillen and Mohammad Mannan. On implementing deniable storage encryption
for mobile devices. In 20th Annual Network and Distributed System Security Symposium,
NDSS 2013, San Diego, California, USA, February 24-27, 2013.

[32] Adam Skillen and Mohammad Mannan. Mobiflage: Deniable storage encryptionfor
mobile devices. IEEE Transactions on Dependable and Secure Computing, 11(3):224–
237, 2014.

14



[33] Deepthi Tankasala, Niusen Chen, and Bo Chen. A step-by-step guideline for creating a
testbed for flash memory research via lpc-h3131 and opennfm. 2020.

[34] Xingjie Yu, Bo Chen, Zhan Wang, Bing Chang, Wen Tao Zhu, and Jiwu Jing. Mobihy-
dra: Pragmatic and multi-level plausibly deniable encryption storage for mobile devices.
In International conference on information security, pages 555–567. Springer, 2014.

[35] Qionglu Zhang, Shijie Jia, Bing Chang, and Bo Chen. Ensuring data confidentiality via
plausibly deniable encryption and secure deletion–a survey. Cybersecurity, 1(1):1, 2018.

[36] Xuan Zhou, HweeHwa Pang, and Kian-Lee Tan. Hiding data accesses in steganographic
file system. In Proceedings. 20th International Conference on Data Engineering, pages
572–583. IEEE, 2004.

15


