
Poster: Incorporating Malware Detection into Flash
Translation Layer

Wen Xie, Niusen Chen, Bo Chen
Department of Computer Science, Michigan Technological University

{wenxie, niusenc, bchen}@mtu.edu

Abstract—OS-level malware may compromise OS and obtain
root privilege. Detecting this type of strong malware is challeng-
ing, since it can easily hide its intrusion behaviors or even subvert
the malware detection software (or malware detector). Having
observed that flash storage devices have been used broadly
by computing devices today, we propose to move the malware
detector to the flash translation layer (FTL), located inside a flash
storage device. Due to physical isolation provided by the FTL,
the OS-level malware can neither subvert our malware detector,
nor hide its access behaviors from our malware detector.

Index Terms—OS-level malware, detection, flash translation
layer, dynamic analysis

I. INTRODUCTION

Malware may compromise OS and obtain root privilege.
We call this type of malware the OS-level malware. Detecting
such malware has been a challenging problem, because: by
obtaining root privilege, the malware can easily hide its
intrusion behaviors, or even directly subvert malware detection
software running in user/kernel space. This work aims to
tackle this problem by moving the malware detection software,
namely, malware detector, out of the regular user/kernel space.

Modern computing devices are increasingly using flash
memory as external storage. For example, high-end desk-
tops/laptops usually use solid state drives (SSDs), instead of
hard disk drives (HDDs); mobile devices like smartphones,
tablets, IoT devices extensively use flash memory in forms
of UFS cards, eMMC cards, or SD/miniSD/microSD cards.
Unlike mechanical drives, flash memory exhibits completely
different characteristics, e.g., erase-then-write design, being
vulnerable of wear. To handle this unique nature transparently,
an independent firmware layer, flash translation layer (FTL),
is usually integrated into a flash storage device, such that it
can provide a block-access interface externally.

Having observed existence of extra firmware layer in a flash
storage device, we propose to integrate the malware detector
into the FTL. This new design is advantageous in terms of
security, as the OS-level malware will not be able to subvert
the malware detector located in the FTL which is transparent
to the OS. However, it could be also risky, as a malware
detector staying in a place under the OS may not be able to
have access to malware behaviors. Fortunately, our preliminary
experimental evaluation on various types of malware shows
that malware running in the upper layer (e.g., application and
OS) does exhibit some unique behaviors in the FTL.

II. BACKGROUND ON FLASH MEMORY AND FTL

Flash-based block devices (e.g., SSD drives, UFS cards,
eMMC cards, SD cards) are used extensively in desktops,
laptops, and smart devices. As a non-volatile storage medium
which can be electrically erased and reprogrammed, flash
memory contains NOR and NAND flash. NAND flash is
usually cheap and has large capacity, and hence has been used
broadly as mass storage. NAND flash stores information in
an array of memory cells, which are grouped into blocks.
Each block is further divided into a few (e.g., 32, 64, or
128) pages. NAND flash supports three basic operations:
read, program (write), and erase. A read/program operation
is usually performed on the basis of pages, while an erase
operation is performed on the basis of blocks.

Flash memory has completely different nature compared to
HDDs. To be compatible with traditional block file systems
(e.g., EXT4, FAT32), a flash-based storage device is usually
used as a regular block device by exposing a block access in-
terface. This is achieved by introducing FTL (flash translation
layer), which stays between the file system and NAND flash,
transparently handling special characteristics of NAND flash.

III. SYSTEM AND ADVERSARIAL MODEL

System model. We mainly consider computing devices
equipped with flash-based block devices. These include
desktops/laptops equipped with SSDs, and mobile devices
equipped with flash memory cards (e.g., eMMC, SD).
Adversarial model. We consider malware which has the
ability of compromising OS of the host computer. There-
fore, any conventional malware detectors which run in the
application/OS layer may be subverted and cannot defend
against this type of “high-privilege” malware. Note that we
mainly consider malware which causes I/Os on the external
storage, e.g., computer viruses, ransomware, etc; additionally,
our malware detector aims to detect the malware in the FTL
and once detects malware, it will inform users for further
actions (e.g., malware blocking and removal, OS restoration,
and system recovery [4]), which are not focuses of this work.

IV. PRELIMINARY DESIGN AND EXPERIMENTS

To combat the OS-level malware, we integrate the malware
detector into the FTL, the internal software layer of a flash-
based storage device. In this way, the OS-level malware will
not be able to subvert the malware detector due to physical
isolation provided by the FTL. In addition, the OS-level

1



malware is not able to hide its intrusion behaviors utilizing
its root privilege (e.g., modifying the system logs to eliminate
all its traces). This is because, intuitively, special behaviors
of malware in upper layers will likely cause special access
behaviors on the underlying flash memory, which can be
observed by the malware detector located in the FTL.

Our FTL-based malware detector consists of three com-
ponents (Figure 1): I/O monitor, malicious pattern set, and
detection engine. The I/O monitor will continuously watch
the I/Os issued by the upper layers and extract access patterns.
The malicious pattern set consists of patterns collected through
performing dynamic analysis on known malware data sets.
Detection engine compares access patterns sent by the I/O
monitor with those stored in the malicious pattern set, and
determines existence of malware.

Fig. 1. A preliminary design of an FTL-based malware detector

Preliminary implementation and experiments. Our testbed
consists of open-source flash firmware, OpenNFM [3], an
electronic board LPC-H3131 [5] with 512MB NAND flash,
and a host computer with Intel Core i7 8700K and 32GB
RAM. The OpenNFM was ported to LPC-H3131, which can
then be used as a regular flash-based block device via USB.
OpenNFM contains 3 layers, FTL, UBI, and MTD. The FTL
layer provides a few access interfaces including FTL Read
and FTL Write, and we can capture each access caused by
the upper layers by intercepting FTL Read and FTL Write.
To extract access patterns of malware, we did the following:
1) We collected 31 ransomware families and 3 computer virus
families [1], each contains a few malware samples. 2) For each
malware sample, we performed dynamic analysis by running
it on the host computer, and collecting all its corresponding
I/Os in the FTL into a trace file (by modifying Open). We
collected 62 I/O trace files in total. 3) We analyzed all the 62
trace files1, extracting patterns. The trace files were analyzed
as follows:

1The dataset is available in https://snp.cs.mtu.edu/research/drm2/
MITON-V0.1.zip.

• View each trace file as a three-dimension sequence and
use dynamic time warping to calculate distance between
each pair of trace files, obtaining a distance matrix.

• Use the obtained distance matrix as input to hierarchical
clustering algorithm to cluster all the trace files, obtaining
clusters.

• Manually distill I/O patterns in each cluster.
The extracted malicious I/O patterns are provided in Table I,
in which Nf denotes #families, and Ns denotes #samples,
under each malicious I/O pattern (note that the computer virus
families are in the rows corresponding to ID 8 and 9).

ID Nf Ns I/O patterns in FTL

1 8 15 Reading is split into several sizes. Write the
whole size into original logical page address

2 9 14 Writing size is smaller than reading size, starting
page address is the same

3 4 7 Writing size is equal to reading size, starting
page address is different

4 1 1 Reading and writing size is mostly 32 or 64, starting
page address is not the same.

5 1 2 R/W size is mostly 1 or 2 at the beginning, and
finally is almost 32.

6 1 4 Reading and writing is a sequence with size 16,2,2,2.
starting page address is the same respectively.

7 7 13 Reading is immediately followed by writing,
their size is equal, starting page address is the same

8 1 2 Writing corrupted file to original place(almost same size),
then write typical size (virus payload) to new place

9 2 4 First write typical size (virus payload) to original place
or new place, then write corrupted file to new place

TABLE I
MALICIOUS I/O PATTERNS EXTRACTED IN THE FTL

V. RELATED WORK

Most existing malware detectors rely on the assumption that
the malware cannot obtain OS privilege, which is unfortunately
not true for the OS-level malware. Especially, to enable data
recovery after ransomware attacks, a few existing works [2],
[6], [7] study ransomware behaviors in the FTL. However,
their designs are purely for ransomware, a special type of
malware. On the contrary, our malware detector aims to detect
any types of malware which generate I/Os on NAND flash.

VI. ACKNOWLEDGMENT

This work was supported by National Science Foundation
under grant number 1938130-CNS and 1928349-CNS.

REFERENCES

[1] Malware samples for ransomware and computer virus. Re-
trieved March 30, 2020, from https://snp.cs.mtu.edu/research/drm2/
malware-samples-03302020.html.

[2] S. Baek, Y. Jung, A. Mohaisen, S. Lee, and D. Nyang. Ssd-insider:
internal defense of solid-state drive against ransomware with perfect data
recovery. In ICDCS. IEEE, 2018.

[3] Google Code. Opennfm. Retrieved May 17, 2019, from https://code.
google.com/p/opennfm/, 2011.

[4] L. Guan, S. Jia, B. Chen, F. Zhang, B. Luo, J. Lin, P. Liu, X. Xing, and
L. Xia. Supporting transparent snapshot for bare-metal malware analysis
on mobile devices. In ACSAC. ACM, 2017.

[5] Mantech. Lpc-h3131. Retrieved May 17, 2019, from https://www.olimex.
com/Products/ARM/NXP/LPC-H3131/, 2017.

2



[6] D. Min, D. Park, J. Ahn, R. Walker, J. Lee, S. Park, and Y. Kim. Amoeba:
an autonomous backup and recovery ssd for ransomware attack defense.
IEEE Computer Architecture Letters, 17(2):245–248, 2018.

[7] P. Wang, S. Jia, B. Chen, L. Xia, and P. Liu. Mimosaftl: Adding secure
and practical ransomware defense strategy to flash translation layer. In
CODASPY. ACM, 2019.

3


