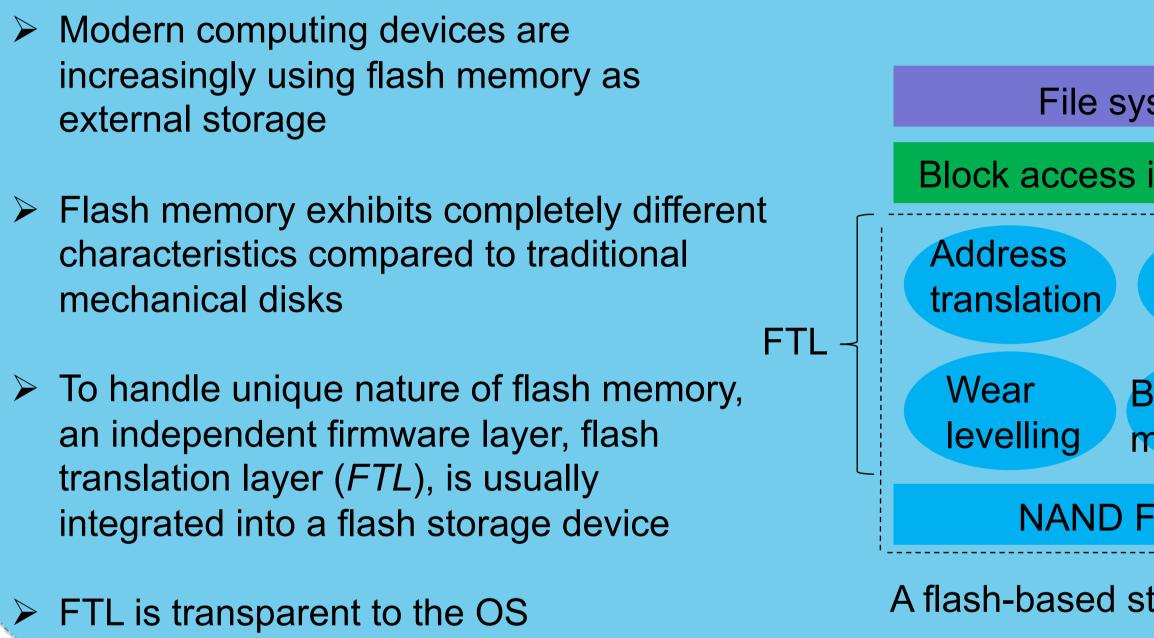


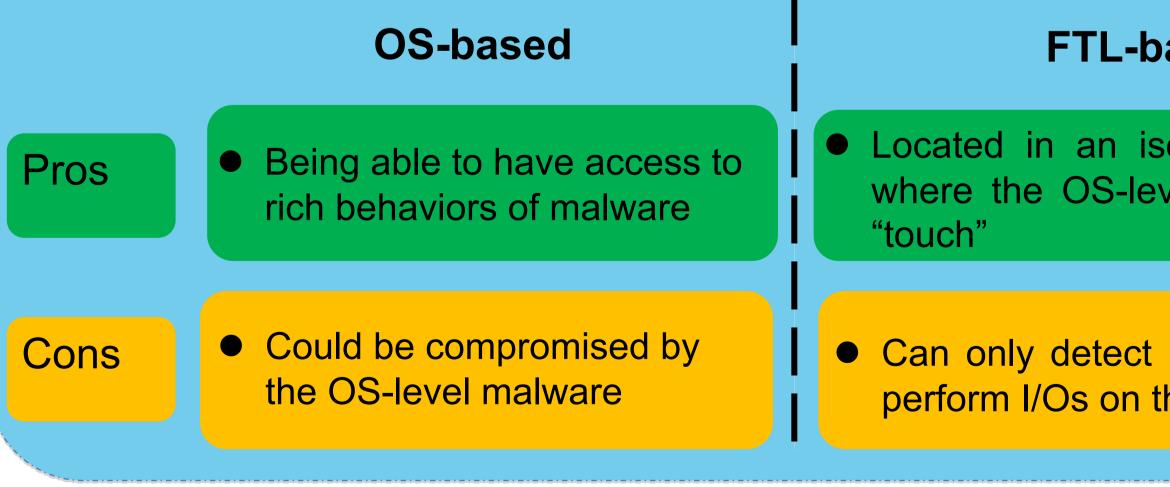
Michigan

University

Technological


Incorporating Malware Detection into the Flash Translation Layer

Wen Xie, Niusen Chen, Bo Chen Department of Computer Science, Michigan Technological University


Motivation

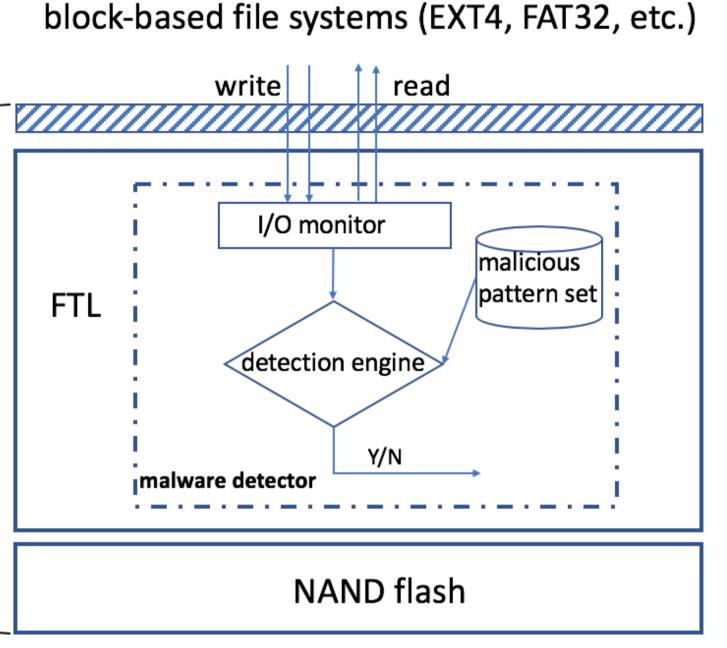
OS-level malware may compromise OS and obtain root p Detecting this type of strong malware is challenging, since it its intrusion behaviors or even subvert the malware detection malware detector).

Isolated Environment in Flash Me

Malware Detection Compariso

Adversarial Model

- > The malware can compromise OS of the host computer
- > The malware causes I/Os on the external storage, e.g., comput ransomware, etc
- Our malware detector aims to detect the malware in the FTL and or malware, it will inform users for further actions (e.g., malware remo


		Preli	m	ina	3	
orivilege.		An FTL-based malware detector:				
can easily hide on software (or		I/O Monitor: Observes the I/Os issued by the upper layers and extracts	blo	ock erface	[
mory		access patterns	mu	enace		
emory		Malicious Pattern Set:				
stem interface		Consists of patterns collected through performing dynamic analysis on known malware data sets		sh rage – vice		
		> Detection Engine:				
ad block	ash- ased ock	Compares access patterns sent by the I/O monitor with those stored in the malicious pattern sets, and determines existence				
	evice	of malware	T	he d	(
lash		Exper	rin	ner	1	
torage system		Ported an open-source flash	С	N _f		
		controller, OpenNFM, to an	1	8		
on		electronic board LPC-H3131, which can then be used as a USB	2	9		
ased		device	3	4		
olated environme	ant	Collected 62 malware samples	4	1		
vel malware cannot		from 31 ransomware families and	5	1		
		3 computer virus families	6	1		
		Ran each sample on a host	7	7		
malware which h he external storag		computer and collected corresponding I/Os in the FTL of	8	1		
		the USB device, generating 62 trace files	9	2		
		Analyzed all the 62 trace files, extracting patterns		Malio Num		
ter viruses,		Acknowle				
nce detects val)		This work was supported by National Science 1938130-CNS and 1928349-CNS.				
					4	

lesign of an FTL-based malware detector

ntal Results

Ns	Pattern
15	Reading is split into several sizes. Write the whole size into original logical page address
14	Writing size is smaller than reading size, starting page address is the same
7	Writing size is equal to reading size, starting page address is different
1	Reading and writing size is mostly 32 or 64, starting page address is different
2	R/W size is mostly 1 or 2 at the beginning, and finally is almost 32
4	Reading and writing is a sequence with size 16,2,2,2. Starting page address is the same respectively
13	Reading is immediately followed by writing, their size is equal, starting page address is same
2	Writing corrupted file to original place (almost same size), then write typical size (virus payload) to new place
4	First write typical size (virus payload) to original place or new place, then write corrupted file to new place
	s I/O patterns extracted. C: Cluster; N _f : of families; N _s : Number of samples

edgment Foundation under grant number