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Abstract. Detecting the OS-level malware (e.g., rootkit) is an espe-
cially challenging problem, as this type of malware can compromise the
OS, and can then easily hide their intrusion behaviors or directly sub-
vert the traditional malware detectors running in either the user or the
kernel space. In this work, we propose mobiDOM to solve this problem
for mobile computing devices. The key idea of mobiDOM is to securely
detect the OS-level malware by fully utilizing the existing secure features
of a mobile device in the hardware. Specifically, we integrate a malware
detector in the flash translation layer (FTL), a firmware layer embed-
ded into the external flash storage which is inaccessible to the OS; in
addition, we build a trusted application in the Arm TrustZone secure
world, which acts as a user-level controller of the malware detector. The
FTL-based malware detector and the TrustZone-based controller com-
municate with each other stealthily via steganography. Security analysis
and experimental evaluation confirm that mobiDOM can securely and
effectively detect the OS-level malware.

Keywords: OS-level malware · Detection · Hardware isolation · Flash transla-
tion layer · TrustZone · Steganography

1 Introduction

We have been witnessing a surge of malware for mobile devices in the past few
years [23]. The malware intrudes into a victim mobile device, stealing personally
private or even mission critical data, corrupting the local storage [24], or control-
ling the entire victim device. Especially, there is one type of strong malware (e.g.,
rootkit) which is able to compromise the entire operating system of the device,
obtaining the root privilege. This type of OS-level malware is extremely difficult
to be combated, since it can easily subvert any traditional anti-malware software
or tools running in the user/ kernel space [6, 12, 14, 15, 21, 30], by leveraging its
high privilege.

To combat the OS-level malware, a first step is to detect them once they are
present in the victim mobile devices. This requires a malware detector, which
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can monitor the system and, once any abnormal activities happen, the malware
detector will make a decision and inform the user (e.g., via a user app) if it reaches
a “malware detected” decision. It turns out that the malware detector cannot
simply run in the normal execution environment of the device to avoid being
compromised by the OS-level malware. In addition, the user app which interacts
with both the end users and the malware detector should not be compromised by
the OS-level malware either. Therefore, a key idea towards a secure design is to
place both the malware detector and the user app to an execution environment
which is isolated from the regular OS and hence the OS-level malware.

Compared to traditional desktops/ laptops, mobile computing devices today
are equipped with unique hardware features: 1) They usually use ARM proces-
sors which have reduced circuit complexity and low power consumption and,
ARM processors have integrated TrustZone, a hardware security feature, into
any Cortex-A processor (built on the Armv7-A and Armv8-A architecture) and
Cortex-M processors (built on the Armv8-M architecture). TrustZone enables
the establishment of a trusted execution environment that is hardware sepa-
rated from the normal insecure execution environment. 2) They typically use
flash storage media instead of hard disk drives (HDD) for external storage. For
example, smartphones, tablets, IoT devices extensively use microSD, eMMC, or
UFS cards. Different from HDDs, flash memory exhibits different physical na-
ture and traditional file systems built for HDDs cannot directly be used on them.
To bridge this gap, a new flash translation layer (FTL) is usually incorporated
into the flash storage media to transparently handle the unique nature of flash,
exposing an HDD-like interface externally.

Leveraging the unique hardware features of mobile devices, we have designed
mobiDOM, the first scheme which can securely and effectively Detect the OS-level
Malware in the mobile devices. Our insights are three-fold: First, we integrate
the malware detector into the FTL. This new design is advantageous because: 1)
the OS-level malware will not be able to subvert the malware detector located in
the FTL which is isolated by the flash storage hardware and remains transparent
to the OS (security); and 2) the malware usually needs to perform I/Os on the
external storage, and such I/Os may exhibit some unique behaviors which can be
observed in the FTL as confirmed in our experiments using real-world malware
samples (effectiveness). Second, we introduce a user-level controller which can
allow the end user to control the malware detector located in the FTL. To pre-
vent the controller from being subverted by the OS-level malware, we separate
its functionality and move the critical component into the “trusted execution
environment” (i.e., a secure world) established by TrustZone. In this way, the
controller is secure and is able to work with the malware detector correctly.
Third, to prevent the malware from noticing the communication between the
malware detector (staying in the FTL) and the controller (the key component is
staying in the secure world), we leverage steganography, so that the controller
and the malware detector can communicate stealthily via the regular I/Os per-
formed on the external storage.

Contributions. Major contributions of this work are:
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– We have proposed the first framework (mobiDOM) which can securely detect
the OS-level malware, utilizing both the isolation environments provided by
main-stream mobile computing devices as well as the steganography tech-
nique.

– We have developed a prototype of mobiDOM, and ported it to a real-world
testbed to assess its performance. We have also assessed the effectiveness of
our FTL-based malware detector by collecting real-world malware samples,
running it in our testbed to capture the I/O traces in the FTL, and using
the I/O traces for training and testing the malware detector.

– We also analyze the security of mobiDOM.

2 Background

2.1 Flash Memory

Flash memory especially NAND flash has been extensively used as the mass stor-
age of main-stream mobile computing devices, in form of SD/ miniSD/ microSD
cards, MMC cards, and UFS cards. Compared to traditional mechanical disk
drives (e.g., hard disk drives), a flash storage medium removes all the mechani-
cal components, and is electrically erasable and re-programmable. Therefore, it
usually has much higher I/O throughput with much lower noise. The NAND flash
is usually divided into blocks, with typical block sizes 16KB, 128KB, 256KB, or
512KB. Each block consists of pages, each of which can be 512B, 2KB, or 4KB in
size. In general, the read/ write operations in NAND flash are performed on the
basis of pages, while the erase operations are performed on the basis of blocks.

NAND flash exhibits a few unique characteristics: First, it follows an erase-
then-write design. In other words, a flash block needs to be erased first before it
can be re-programmed. Therefore, to modify the data stored in a page, we need
to first erase the encompassing block, which requires copying out valid data in
this block, erasing the block, and writing the data back, leading to significant
write amplification. To mitigate the write amplification, flash memory usually
uses an out-of-place instead of in-place update strategy. Second, each flash block
only allows a limited number of program-erase (P/E) cycles and, if a flash block
is programmed/ erased too frequently, it will turn “bad” and cannot store data
correctly. Therefore, wear leveling is needed to distribute P/Es evenly across the
entire flash. Third, reading/ writing a flash memory cell frequently may cause its
nearby cells in the same block to change over time, causing read/ write disturb
errors.
Flash translation layer (FTL). Existing flash storage media usually can be
used as block devices just like HDDs. This is because, they usually integrate
a flash translation layer (FTL), to transparently handle the special nature of
NAND flash, exposing a block-access interface. In this way, traditional block-
based file systems (e.g., EXT, FAT, and NTFS) can be directly deployed on
top of flash storage media. The FTL usually implements four key functions:
address translation, garbage collection, wear leveling and bad block manage-
ment. Address translation manages the mappings between the block addresses
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and the actual flash memory addresses. Garbage collection periodically reclaims
the flash blocks which store invalid data (the data are invalidated due to the
out-of-place update). Wear leveling ensures that programmings/ erasures are
distributed evenly across the flash. Bad block management handles those blocks
which occasionally turn “bad”, so that they will not be used to store valid data.

2.2 ARM TrustZone

The TrustZone security extensions are available in ARM Cortex-A processors
(or processors built on the Armv7-A and Armv8-A architecture), as well as
ARM Cortex-M processors (built on the Armv8-M architecture). Its core idea
is to create two execution environments which run simultaneously on a single
processor: a secure execution environment (i.e., the secure world) which can be
used to run sensitive applications, and a non-secure execution environment (i.e.,
the normal world) which can be used to run non-sensitive applications. Each
world operates independently when using the same processor and, switching
between them is orthogonal to all other capabilities of the processor. Memory/
peripherals are aware of the corresponding world of the core and, applications
running in the normal world cannot have access to the memory space of the
secure world.

2.3 Steganography

Steganography in communication allows a sender to send a seemingly innocuous
message, which conceals some critical information, to a receiver. In this way, the
critical message can be delivered to the receiver stealthily, i.e., without being
noticed by the adversary staying in the middle. Compared to cryptography which
protects the content of critical messages (e.g., via encryption), steganography is
more advantageous since it essentially conceals the fact that a critical message
is being sent as well as protects the corresponding content.

3 System and Adversarial Model

3.1 System Model

We consider a mobile computing device which is equipped with an ARM proces-
sor (with TrustZone feature enabled) and a flash-based block device as external
storage (e.g., a miniSD/ microSD card, eMMC card, or UFS card). This type of
mobile devices can be found widely in real world, including smartphones, tablets,
wearable devices, etc. A general architecture of the device is shown in Figure 1.
By leveraging TrustZone, we can create a secure world in the mobile device, in
which there is a small trusted operating system, with trusted applications (TA)
running on top of it. In the normal world of the mobile device, there is a rich
operating system, with regular applications running on top of it. The external
flash storage is used as a block device since the FTL transparently handles the
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unique nature of NAND flash, exposing a block access interface externally. We
assume there are N data blocks on the block layer which are usable by the OS.
Note that the size of a data block is equal to the size of a flash page, and if the
flash page is 2KB, each data block will consist of 4 512-byte sectors.

Fig. 1. The architecture of a mobile device

3.2 Adversarial Model

We consider the OS-level malware which is able to compromise the regular rich
operating system (in the normal world) of a victim mobile computing device,
e.g., by exploiting the system vulnerabilities and escalating the privilege. By
compromising the OS, the malware is able to subvert any malware detection
tools which run in either the application level or the system level of the normal
world. Note that the malware in real world is highly heterogeneous in behaviors,
and we only target the malware (e.g., computer viruses, ransomware, etc.) which
will perform abnormal/ suspicious I/Os on the external storage.

We rely on a few assumptions: First, the malware is assumed to be not able
to compromise the trusted OS and TAs running in the TrustZone secure world,
which is a reasonable assumption in the domain of TrustZone technologies [13].
The malware is also assumed to be not able to hack into the FTL, which only
provides a limited set of block access interfaces externally to the OS. Second,
we assume that the malware will not perform DoS attacks, e.g., blocking regular
(or seemingly regular) communications between TAs running in the secure world
and applications running in the normal world, or blocking I/Os performed by
TAs on the external flash storage device. This assumption is reasonable because:
if the malware blocks the communications or I/Os, the TAs in the secure world
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will detect such an anomaly trivially and notify the user. However, the malware
may view, modify or replay the communicated messages and remain undetected.

4 Design

4.1 Design Overview

The design overview of mobiDOM is shown in Figure 2. We introduce TApp, a
trusted application running in the TrustZone secure world. We also introduce
MDetector, a malware detector running in the FTL. The TApp acts as a trusted
controller of the MDetector. Both the TApp and the MDetector are running in
an individual isolated execution environment which is invisible to the operating
system (and the OS-level malware as well). A key issue is how to allow the
TApp and the MDetector to securely communicate with each other without being
compromised by the OS-level malware. An immediate solution is to allow the
TApp to read/ write the external flash storage directly via the trusted OS running
in the TrustZone. This however, requires adding extra software components (i.e.,
disk drivers and other necessary components in the storage path) to the small
trusted OS which would introduce a lot of extra burden to the secure world.

Having observed that a trusted application in the secure world is usually
invoked by a client application (CA) in the normal world, we therefore let the
TApp use the CA as a proxy1 to communicate with the MDetector, taking advan-
tage of the rich OS in the normal world. To protect the communication between
the TApp and the MDetector, we leverage steganography. Specifically, the secret
messages being communicated between the TApp and the MDetector are hidden
in the (seemingly) normal I/Os issued by the TApp on the flash storage device
(via CA as a proxy). This is advantageous in a few aspects: First, since the se-
cret communicated messages between the TApp and the MDetector are hidden in
the normal I/Os, and their confidentiality can be ensured. Second, the integrity
of the secret communicated messages can be also ensured since if the malware
manipulates the I/Os, the secret messages will not be extracted correctly by the
receiver and the receiver will notice that. Third, the steganography technique es-
sentially hides the fact that some secret messages are exchanged, and therefore,
the malware is not able to notice the existence of this cover communication.

A few challenges need to be addressed. First, how can we hide the secret
messages (e.g., start, stop, query command issued by the TApp to the MDetector)
into the regular I/Os? Our idea is, when the TApp performs a write request on
the external storage, we randomly select a portion of bits from the write request
to embed a secret message. Note that: 1) Each write request is usually a few
KBs in size, and the secret message is 100+ bits2; in other words, only a tiny

1 The OS-level malware will neither perform DoS attacks nor block/ delay regular
communications and I/Os to avoid being noticed by the user (Sec. 3.2), and hence
the CA will always provide this proxy service correctly.

2 To prevent the adversary from guessing the secret message, we should use enough
bits to represent it, and 100+ bits should be secure enough.
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portion (e.g., less than 1%) of each write quest has been changed, creating a
message which hides the secret message (we call this newly generated message
the “steg-message”). This tiny modification will not be alerted by the adversary.
2) The write requests originally issued by the TApp on the external storage
are always “cover messages” and allow being altered. 3) The adversary will not
be able to access the TrustZone secure world, and hence will not be able to
check out the original cover messages. Therefore, the adversary is not able to
detect the existence of steganography by comparing the steg-messages with the
corresponding cover messages.

Second, how can the MDetector securely convey a response back to the TApp?
An immediate solution is that the MDetector modifies the data stored in a flash
page to encode a secret response, and the TApp performs a read request on a
location of the external storage which is mapped to this page. This immediate
solution unfortunately is insecure, since the adversary can have access to the
external storage beforehand, and obtain the original data stored in this page
and, by comparing the original data with the data after being modified by the
MDetector, the adversary can easily identify the existence of steganography. A
key observation toward resolving this challenge is that, all the responses sent by
the MDetector to the TApp are used to indicate a binary (0 or 1) result, e.g., the
command (start or stop) is successfully performed (1) or not (0), or the malware
is detected (1) or not (0). Specifically, after the TApp has sent a secret command
to the MDetector by performing a write request (which stealthily encodes the
secret command) on a random location, the TApp will immediately read the same
location. If the read request is returned normally, it will indicate 0; otherwise,
if the read request is returned with extra delay, it will indicate 1. Note that: 1)
The extra delay should be a secret and dynamic value. The TApp can pick this
delay value each time when sending a secret command, and treat it as a part of
the secret command. 2) The extra delay can be plausibly denied as the normal
system delay, since it happens rarely, e.g., it only happens when the MDetector
starts to work, stops working, or has detected the malware.

4.2 Design Details

Let κ and l be security parameters. n is the size of a data block (in terms of
bits), and s be the size of the messages (in terms of bits) communicated between
the TApp and the MDetector. To avoid disturbing the regular workloads of the
system, we reserve an area at the end of the block layer for the communication
between TApp and the MDetector. The reserved area has d ·N data blocks, with
d << 1 and d > 0. Note that this reserved area does not lead to the compromise
of steganography, as having a reserved area is pretty common, e.g., a swap space,
a space for backup purpose, or a reserved space for a hidden volume [10,22]. We
choose a pseudo-random function (PRF) f and a pseudo-random permutation
π, defined as follows:
f : {0, 1}κ × {0, 1}∗ → {0, 1}l;
π: {0, 1}κ × {0, 1}logn2 → {0, 1}logn2 .
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Fig. 2. The design overview of mobiDOM

Cover channel between TApp and MDetector via Steganography. The
TApp and the MDetector independently maintain 2 secret keys k1 and k2, as well
as a counter which will be initialized as 0 during system initialization. We define
three secret messages3: START, STOP, and QUERY, which are communicated
stealthily between the TApp and the MDetector via the steganography:

– START: The TApp uses this message to inform the MDetector to start the
malware detection process. Note that the TApp will ask the CA to perform
a regular write of DATA on a chosen data block of the block layer, and the
DATA conceals the “START” message.

– STOP: The TApp uses this message to inform the MDetector to stop the
malware detection process. Similarly, the TApp will ask the CA to perform
a regular write of DATA which conceals the “STOP” message.

– QUERY: Periodically, the TApp sends a query (malware is detected or not)
to the MDetector. The TApp will ask the CA to perform a regular write of
DATA which conceals the “QUERY” message.

Note that each secret message is a collection of s bits determined during the
initialization which is only known to the TApp and the MDetector, and s should
be large enough to prevent brute-force attacks.

3 mobiDOM only defines three basic messages to enable the basic functionality, but it
can be easily extended to support extra communicated messages.
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To start the malware detection, the TApp works as follows: It will generate
DATA, pick a delay value, and encode the START message and the delay value
into it, by running the Encode algorithm (Algorithm 1) using START ||delay,
DATA, k1, counter as input, generating the stegDATA (corresponding to the
“steg-message”). The TApp then runs Algorithm 3 using key k2, counter, N as
input, generating a random location j. The TApp further asks the CA to perform
a write of stegDATA on block location j. The MDetector works as follows: It
will monitor the write on the page corresponding to data block j (by applying
Algorithm 3 using key k2, counter, N as input, the MDetector can generate
j), obtaining the stegDATA. It will then decode the stegDATA, by applying the
Decode algorithm (Algorithm 2) using key k1 and counter as input. It will further
check whether the resulting decoded message contains the START message or
not. If START is found, it will extract the delay value from the decoded message,
start the malware detection, and add an artificial delay (determined by the
extracted delay value) to the read request on the flash page corresponding to
data block j. After having measured the read delay on the data block j, the
TApp knows that the malware detection has been started successfully. Both the
TApp and the MDetector will increase the stored counter by 1. To stop the
malware detection, a similar process in both the TApp and the MDetector will
be followed except that the secret message is replaced by STOP. Periodically, the
TApp checks with the MDetector whether the malware has been detected or not
using the QUERY message. The time interval for the this periodical check is a
trade-off between the performance overhead and the delay of malware detection.
In addition, the process for each check in both the TApp and the MDetector is
similar to that for starting the malware detection, except that: 1) If no malware
has been detected, the MDetector will not add an artificial delay to the read
request on the flash page corresponding to data block j. This is advantageous,
since the detected malware is a rarely happening event and most queries will not
result in read delay. 2) Regardless whether the malware is detected or not, the
counter in both the TApp and the MDetector will be increased by 1. In this way,
the secret QUERY message will embedded differently each time, preventing the
adversary from noticing the existence of steganography by comparing multiple
subsequent write requests.

Algorithm 1: Encode

Input: MESSAGE, DATA, key k, counter
Output: stegDATA
View MESSAGE as a collection of t bits
View DATA as a collection of n bits
for i = 1 : t do

j = πk(counter||i)
DATA[j − 1] = MESSAGE[i− 1]

return DATA
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Algorithm 2: Decode

Input: stegDATA, key k, counter
Output: MESSAGE
View stegDATA as a collection of n bits
for i = 1 : t do

j = πk(counter||i)
MESSAGE[i− 1] = stegDATA[j − 1]

return MESSAGE

Algorithm 3: Generate a random location in the reserved area

Input: key k, counter, N, d
Output: a random location in the reserved area
j = (1− d) ·N + fk(counter)%(dN) return j

Malware detection in the FTL. The idea of our FTL-based malware detector
(MDetector) is to detect the malware in the FTL by analyzing the access on the
flash storage caused by software (malicious or not) running at the upper layers
(i.e., the application or the OS layer). The key observation is that, the malware
running at the upper layers may exhibit some unique access behaviors in the
FTL [29] and, by capturing those behaviors, we may detect the malware. The
advantage of MDetector is clear, since even if the malware can compromise the
OS, it cannot compromise our MDetector which has been isolated from the OS
at the hardware level. To function correctly, the MDetector relies on a classifier,
which is able to classify any software as malicious and non-malicious in real
time. The classifier should be trained using the set of pre-collected malware.
Once the classifier has been trained and loaded, MDetector will monitor all the
I/O requests issued from the upper layers, analyze them in real time, and decide
whether there is malware present. Once any malware is identified, the MDetector
will work with the TApp to get the user aware of the instance.

5 Discussion and Analysis

5.1 Discussion

Security of TrustZone. mobiDOM relies on an implied assumption that Trust-
Zone itself is secure. This seems to be a widely acceptable assumption in the do-
main of TrustZone-based solutions [13]. There have been various attacks against
TrustZone however, e.g., side-channel attacks [9, 20], CLKSCREW attacks [25],
hardware-fault injection attacks [19], etc. Enhancing security of TrustZone has
been actively taken care of in the literature [27] and is not the focus of this work.
Defending against other types of OS-level malware. Malware detection in
the mobile devices has been a very challenging task because of the heterogeneity
and diversity of the malware in the wild. This turns out to be even more chal-
lenging when the malware can obtain the OS-level privilege. mobiDOM can only
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defend against a special type of OS-level malware which causes abnormal I/Os
on the external storage media. For other types of OS-level malware, a potential
solution is to run the malware detector in an isolated execution environment,
which will then access the main memory of the normal world periodically (e.g.,
via direct memory access). We will further explore this in the future work.
Towards making mobiDOM more practical. One practical issue is to keep
the FTL lightweight, since it is a thin firmware layer managed by less powerful
processors and RAM. When integrating the malware detector into the FTL, a
significant concern lies in the performance of ML-based detection. An option
towards improving the performance would be conducting a model prunning [31],
which can help increase inference speed and decrease storage size of the ML
model; additionally, upon initializing mobiDOM, the ML model can be loaded
into the RAM for malware detection later. Another practical issue is to manage
interference of I/Os among regular software as well as multiple malware, which
may perform I/Os simultaneously. Our experimental results in Sec. 6 only cap-
ture the scenario in which there is only one piece of malware running in the
system. We will further investigate such interference in our future work.

5.2 Security Analysis

There are 3 major components in mobiDOM: the TApp, the MDetector and the
communication messages between the TApp and the MDetector (Via the CA).

The security of the TApp is ensured by ARM TrustZone secure world. With-
out being able to compromise the TrustZone, the adversary is not able to com-
promise the TApp even if it can compromise the OS. In addition, the adversary
will not be able to identify the existence of the TApp in the TrustZone secure
world, since the TApp simply writes/ reads data to/ from the external flash stor-
age (via the CA), which is pretty regular for any trusted applications running in
the TrustZone.

The security of the MDetector is ensured by the FTL. Due to the isolation
of the FTL in the hardware level, the adversary will not be able to compromise
the FTL, even if it can compromise the OS. Therefore, the malware will not be
able to notice the existence of MDetector, let alone to compromise it.

The communication messages between the TApp and the MDetector can be
protected as analyzed in the following. First, their confidentiality can be ensured
by staying hidden among regular I/Os via steganography. Specifically, the secret
command messages from the TApp to the MDetector (START, STOP, QUERY)
are hidden in the regular write requests on the external storage, which will be
invisible to and hence unnoticeable by the adversary. In addition, the response
messages are conveyed back from the MDetector to the TApp via read delays and,
since the delay time is a one-time secret value, the adversary cannot interpret
anything from such delays, which can be plausibly denied as occasional system
delays (considering the delays in mobiDOM only happen when starting/ stopping
the malware or having detected the malware). In addition, the existence of CA
will not give the adversary any advantage of inferring the existence of mobiDOM
since it is pretty common for the TrustZone-based applications to have CAs
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running in the normal world to communicate with TAs located in the Trust-
Zone secure world. Second, the integrity of the communication messages can be
ensured. If the adversary modifies or replays the messages sent from the TApp
to the MDetector, the MDetector can easily detect it since the secret command
messages cannot be extracted successfully; if the adversary delays the communi-
cation messages sent from the TApp to the MDetector or the read responses from
the MDetector to the TApp, the TApp can notice it considering the actual delay
time in mobiDOM is a one-time secret value. Note that we do not consider DoS
attacks in which the adversary blocks the communication messages or I/Os.

6 Implementation and Experimental Evaluation

To construct a mobile computing device following the architecture in Figure 1,
we used two electronic development boards to build the testbed: 1) a Rasp-
berry Pi [4] (version 3 Model B, with Quad Core 1.2GHz Broadcom BCM2837
64bit CPU, 1GB RAM) which is used as the host computing device, and 2)
a USB header development prototype board LPC-H3131 [17] (with ARM9 32-
bit ARM926EJ-S 180Mhz, 32MB SDRAM, and 512MB NAND flash) which is
used as the external flash storage. The LPC-H3131 is connected to the Rasp-
berry Pi via a USB2.0 interface (Figure 3). We have ported OP-TEE (Open
Portable Trusted Execution Environment) [3] to the Raspberry Pi to facilitate
the development of TrustZone applications. The TApp has been implemented
into the TrustZone secure world as a trusted application (TA). In addition, we
have ported [26] an open-source flash controller (FTL) OpenNFM [11] to LPC-
H3131 and, after OpenNFM has been ported, the LPC-H3131 can be used as a
flash-based block device by the host computing device via the USB2.0 interface.
We have modified OpenNFM to support the communication between the TApp
and the MDetector via steganography. In addition, a client application (CA) has
also been built which runs in the normal world as a proxy for communication.
For pseudo-random function, we used HMAC-SHA1, in which the size of the
output hash value is 160-bit (i.e., l) and the key size is 128-bit (i.e., κ). The size
of the secret message is 128-bit (i.e., s). N is approximately 250,000 (in terms
of 2KB data blocks). To further optimize4 the performance in TrustZone secure
world a bit, we have pre-computed the PRF/ PRP values and stored them in
the memory of the secure world during initialization.
Evaluating the communication between the TApp and the MDetector. To
assess the time required to execute a command (START, STOP, QUERY) issued
by the TApp to the MDetector, we have evaluated four cases: 1) no extra delay
is added; and 2) 1-second delay is added; and 3) 3-second delay is added; and
5-second delay is added. We have measured 20 times for each case. Note that the

4 Note that currently we have successfully created the testbed using the Raspberry
Pi which: 1) successfully connects to our LPC-H3131 via USB2.0 and, 2) supports
Arm TrustZone. However, Raspberry Pi is very poor in performance as observed
in our experiments. We are testing new electronic development boards including
BD-SL-i.MX6 [1] to build a more powerful testbed.
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Fig. 3. The testbed for mobiDOM

performance of the Raspberry Pi will suffer due to temperature (known as ther-
mal throttling) and, if the CPU temperature exceeds 60 Celsius (but should be
below 85 degrees Celsius for it to work properly), the system will automatically
throttle the processor. Our experiment results are shown in Figure 4. We can
observe that: First, without adding any extra delay, it takes around 5 seconds
to execute a command. The overhead mainly includes: encoding a secret mes-
sage into the stegDATA (in the TrustZone secure world), writing the stegDATA
to a flash page (in the normal world), extracting the secret message from the
stegDATA (in the FTL), and reading the stegDATA from the flash page (in the
normal world). A major time consumption comes from the Raspberry Pi since it
significantly slows down when reaching 75 degrees Celsius. Note that this case is
applied to three scenarios: 1) The START command is issued by the TApp, but
the MDetector cannot successfully start the malware detection; 2) The STOP
command is issued by the TApp, but the MDetector cannot successfully stop
the malware detection; 3) The QUERY command is issued by the TApp, and
no malware has been detected by the MDetector. Second, after adding differ-
ent delays (1 second, 3 seconds, 5 seconds) in the FTL, the time required for
executing a command can be easily differentiated from that no extra delay is
added. This justifies the effectiveness of mobiDOM in conveying a response from
the MDetector back to the TApp stealthily by adding extra delays. Note that
this case is applied to three scenarios: 1) The START command is issued by
the TApp, and the MDetector successfully starts the malware detection; 2) The
STOP command is issued by the TApp, and the MDetector successfully stops
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the malware detection; 3) The QUERY command is issued by the TApp, and the
MDetector has detected some malware.

Fig. 4. Time for executing a command (START, QUERY, STOP) with/ without
adding delays. The CPU temperature is around 75 degrees Celsius.

Evaluating the effectiveness of malware detection in the FTL. To un-
derstand the effectiveness of detecting malware in the FTL, we have collected
96 malware samples (mainly from VirusTotal [5]) and 36 benign software sam-
ples (including compression/ encryption/ deletion software, etc. which will cause
I/Os to the external storage). For each sample, we manually ran it in a com-
puter, which was connected to the LPC-H3131 via the USB, and collected the
I/O traces (the entire dataset is available in [2]) in the FTL into a trace file.
Note that after running each malware sample, we need to restore the entire sys-
tem to the initial clean state. We used k-Nearest Neighbors (kNN), a supervised
machine learning algorithm for classification. We chose k as 1. Our training set
contains the I/O traces from 80 malware samples and 30 benign software sam-
ples. To test the effectiveness of the malware detection, we used the I/O traces
from the remaining 16 malware samples and 6 benign software samples. For each
trace file, we selected the first 30 I/O traces, which can be viewed as a three
dimensional sequence. Also, we used the dynamic time warping method as the
distance metric in kNN.

The experimental results are shown in Table 1. We can observe that: 1) The
detection accuracy is 91%, which can justify the effectiveness of our FTL-based
malware detector. 2) The false positive rate and the false negative rate are 33%
and 0%, respectively. The low false negative rate indicates that our malware
detector does not miss any malware if present. The false positive rate seems
a little high in our malware detection. The reason is that, in our experiments,
we have deliberately chosen those benign software samples which exhibit some
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similar patterns to the collected malware. However, in practice, most of the
benign software may not exhibit such similar patterns.

Accuracy False negative rate False positive rate

91% 0% 33%

Table 1. Detection results

7 Related Work

Aafer et al. [6] propose to detect Android malware by relying on critical API
calls, their package level information, and their parameters. Zhang et al. [30]
propose a semantic-based malware classification to accurately detect both zero-
day malware and unknown variants of known malware families, in which they
model program semantics with weighted contextual API dependency graphs.
For ransomware, existing detection approaches mainly monitor typical file sys-
tem activities [12, 14, 15, 21] or analyze cryptographic primitives [12, 15, 16]. For
example, Unveil [14] generates an artificial user environment and monitors desk-
top lockers, file access patterns and I/O data entropy; CryptoDrop [21] observes
file type changes and measures file modifications using a similarity-preserving
hash function and Shannon entropy to detect ransomware. The aforementioned
malware detection mechanisms work under the assumption that the malware
cannot obtain the OS privilege, which is unfortunately not true for the OS-level
malware.

MimosaFTL [28], SSD-Insider [7, 8], Amoeba [18] tried to detect the ran-
somware in the FTL. The major differences between them and mobiDOM are:
First, mobiDOM is a general detection framework for any malware which causes
abnormal I/Os on the external storage, rather than a specific framework for
ransomware. Second, as a general malware detection framework, mobiDOM se-
curely works with the user-level app, which is necessary for further actions after
malware is detected. This is possible by leveraging both the ARM TrustZone (en-
suring the security of the app) and the Steganography (ensuring the security of
the communication between the malware detector and the user app) technique.
On the contrary, the existing detection frameworks [7, 8, 18, 28] are specific for
device-level data recovery and do not interact with user apps.

8 Conclusion

In this work, we have designed mobiDOM, a framework for combating the strong
OS-level malware by smartly taking advantage of the existing secure features of
mobile devices at the hardware level. Security analysis and experimental evalu-
ation justify both the security and the effectiveness of mobiDOM.
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