Enabling Accurate Data Recovery for Mobile
Devices against Malware Attacks

Wen Xie, Niusen Chen, and Bo Chen*

Department of Computer Science, Michigan Technological University, Michigan,
United States
bchen@mtu.edu

Abstract. Mobile computing devices today suffer from various malware
attacks. After the malware attack, it is challenging to restore the device’s
data back to the exact state right before the attack happens. This chal-
lenge would be exacerbated if the malware can compromise the OS of the
victim device, obtaining the root privilege. In this work, we aim to design
a novel data recovery framework for mobile computing devices, which
can ensure recoverability of user data at the corruption point against the
strong OS-level malware. By leveraging the version control capability of
the cloud server and the hardware features of the local mobile device,
we have successfully built MobiDR, the first system which can ensure
restoration of data at the corruption point against the malware attacks.
Our security analysis and experimental evaluation on the real-world im-
plementation have justified the security and the practicality of MobiDR.

Keywords: mobile device, data recovery, OS-level malware, corruption
point, FTL, TrustZone, version control

1 Introduction

Mainstream mobile computing devices (e.g., smart phones, tablets, etc.) have
been suffering from various malware attacks [7]. For example, ransomware en-
crypts the data of a victim device and asks for ransom; trojans first steal data
from a victim device, send the data to the remote controller, and corrupt the
data locally. Especially, there is one type of strong malware [14] which can com-
promise the OS, obtaining the root privilege. This type of OS-level malware
is difficult to combat due to its high system privilege [14]. Data are extremely
valuable for both organizations and individuals. Therefore, after a mobile device
is attacked by the OS-level malware and the stored data are corrupted, it is of
significant importance to ensure that the valuable data can be restored to the
exact state right before the malware corruption (data recovery guarantee).
We define the point of time right before the malware starts to corrupt the data
as the “corruption point”, and the data recovery guarantee requires restoring
the data at the corruption point after malware attacks.

* Corresponding author.

To enable data recovery, existing works either 1) purely rely on a remote
version control server [19,11,18], or 2) purely rely on the local device [28,29,
8,9,21,23]. Simply relying on the remote version control server cannot achieve
the data recovery guarantee, as the OS-level malware may compromise the most
recent data changes (i.e., delta) in the device which have not! been committed
remotely and, the remote server can only allow restoring the historical state of
the data rather than the exact state at the corruption point. Simply relying on
the local storage cannot achieve the data recovery guarantee against the OS-level
malware either, because: First, FlashGuard [21] and TIMESSD [29] retain his-
torical data in the storage hardware for data recovery. This is essentially equal to
maintaining a local version control system but, due to the limited local storage
capacity, the historical data can only be retained for a short term (e.g., 20 days
in FlashGuard). This implies that the data which are not retained any more may
become irrecoverable if compromised by the malware. Second, MimosaFTL [28§],
SSD-Insider [8], and Amoeba [23] incorporate malware detection to avoid re-
taining too much unnecessary historical data, but the malware detection may
suffer from false negatives and the data corrupted by the undetected malware
may be lost. SSD-Insider++ [9] tries to compensate the false negatives, but their
strategy is specific for the ransomware and, their lazy detection algorithm still
suffers from potential false negatives.

In this work, we aim to achieve the data recovery guarantee against the OS-
level malware. Our key idea is to build a secure version control system wirtually
across the mobile device and the version control server in an adversarial setting
(Figure 1), such that the most recent delta data are correctly maintained in
the mobile device and the historical delta data are correctly stored in the cloud
server. In this manner, any version of data is recoverable in the mobile device
hence the version of data at the corruption point is always recoverable. A salient
advantage of our design is that it does not rely on any malware detection mech-
anisms and hence does not suffer from false negatives and, meanwhile, it does
not suffer from the storage capacity as the cloud storage can be easily scaled up.
Towards the aforementioned goal, the first step of our design is to ensure that
the OS-level malware cannot corrupt any newly generated delta data. Mobile
devices today usually use flash memory as external storage and, a flash storage
medium typically exhibits two salient hardware features: 1) performing out-of-
place update internally, and 2) introducing a flash translation layer (FTL) to
transparently handle the flash memory hardware. Therefore, we can simply hide
the delta data in the flash memory [20,21]: due to the physical isolation, the
malware cannot physically “damage” the delta data stored in the flash memory
even if it can compromise the OS; additionally, as the flash storage performs
out-of-place update, overwriting operations performed by the malware at the
OS level can only invalidate rather than delete the delta data stored in the flash
memory. Besides, our design needs to address extra challenges:

! Typically, delta data are committed to the remote server periodically rather than
continuously, to reduce bandwidth/energy consumption imposed on the low-power
mobile computing devices.

delta, delta, deltas delta,; delta,

-
-
-

»

\ Cloud server ! Mobile device

Fig. 1. A virtual version control system across the cloud server and the mobile device.
We focus on defending against attackers in the mobile device side. Handling attackers
in the cloud server side has been explored extensively before [19,11,17,18, 31,12, 26].

First, the malware may first overwrite the user data at the OS level, invali-
dating them in the flash memory, and then fill the entire disk (on top of the block
device) to force the garbage collection in the flash memory to reclaim those flash
blocks storing invalid data. To address this challenge, we periodically invoke a
backup process which commits the new delta data to the cloud server and, be-
fore any new delta data are committed remotely, we will temporarily “freeze”
the garbage collection over them. In other words, once the new delta data are
committed remotely, the garbage collection on them can run normally.

Second, the OS-level malware may disturb the backup process, so that the
delta data may not be securely extracted from the flash memory and correctly
committed to the cloud server. To facilitate the backup process, we need a backup
app which runs in the application layer, securely extracting delta data and com-
mitting them to the cloud server. Two issues need to be tackled:

1) How can we prevent the backup app from being compromised by the OS-
level malware? Mobile devices today are broadly equipped with Arm processors,
which provide a hardware-level security feature TrustZone. TrustZone can allow
creating a trusted execution environment (i.e., a secure world) and, any code
running in this environment cannot be compromised by the adversary which can
compromise the OS. We therefore move critical components of the backup app
into the secure world to avoid being compromised by the malware.

2) How can the backup app securely extract delta data from the flash memory?
The backup app runs at the application layer and does not have access to the raw
data in the flash memory. We therefore modify the FTL, so that upon the backup
process, it can work with the backup app, extracting the raw flash memory data
and sending them to the backup app. To prevent the malware from disturbing
the extraction process, we incorporate a backup mode into the FTL and, if the
mode is activated, the FTL will be exclusively working for the backup process.
To activate the backup mode securely, authentication is performed based on
the secret known by the backup app and the FTL. To prevent the malware
from corrupting delta data sent from the FTL to the backup app, the FTL will
compute cryptographic tags for the delta data using a secret key, and the backup

app will verify the delta data before committing them remotely. To prevent the
malware from replaying old delta data, the version number should be embedded
into each tag. Note that the FTL stays isolated from the OS, therefore the
malware cannot compromise the tag computing process as well as the secret key.
Contributions. We summarize our contributions below:

— We have designed MobiDR, the first data recovery system for mobile computing
devices, that can ensure recoverability of data at the corruption point against
malware attacks. We consider the strong malware which is allowed to compromise
the OS of the victim device.

—We have built two user-level apps, DRBack and DRecover, which make the
proposed design usable by regular mobile users in the user space. The apps
work together with our modified FTL (DRFTL) to enable secure data backup
(periodically) and data recovery (upon failures).

—We have analyzed the security of MobiDR. In addition, we have implemented
a real-world prototype of MobiDR using a few embedded boards and a remote
version control server, and assessed the performance of MobiDR.

2 Background

Flash memory. Flash memory especially NAND flash is widely used as the
mass storage for mobile devices today. For instance, main-stream smartphones
and tablets use eMMC and UFS cards; smart IoT devices use microSD cards.
Flash memory is typically organized into blocks, each of which is further divided
into pages. The number of pages in a flash block varies from 32 to 128, and the
page size varies from 512, 2048, to 4096 bits. Each page usually contains a small
spare out-of-band (OOB) area, used for storing metadata like error correcting
code. Flash memory typically supports three operations: read, program, and
erase. The read/program operation is performed on the basis of pages, while the
erase operation is performed on the basis of blocks. Different from conventional
mechanical drives, flash memory exhibits some unique characteristics. First, it
follows an erase-then-write design. This means, re-programming a flash page
usually requires first erasing it. However, since the erase operation can only be
performed on blocks, re-programming a few pages would be expensive. Therefore,
flash memory uses an out-of-place update strategy for small writes. Second, each
block can be programmed/erased for a limited number of times, and a block
would be worn out if it is programmed/erased too often. Therefore, wear leveling
is usually integrated to distribute writes/erasures across the flash evenly.

Flash translation layer (FTL). Flash memory exhibits completely different
nature compared to HDDs (hard disk drive). To be compatible with traditional
block file systems (e.g., EXT4, FAT32) built for HDDs, a flash-based storage
device is usually used as a block device. This is achieved by introducing an ex-
tra firmware layer, namely, the flash translation layer (FTL) to transparently
handle unique characteristics of flash memory, exposing a block access inter-
face. The FTL stays isolated from the OS, implementing a few unique functions
including address translation, garbage collection, wear leveling, and bad block

management. Address translation maintains the address mappings between the
addresses (i.e., the Logical Block Addresses or LBAs) accessible to upper layers
and the flash memory addresses (i.e., the Physical Block Addresses or PBAs).
Garbage collection periodically reclaims the flash memory space occupied by
obsolete data which have been invalidated by the FTL after the out-of-place
update is performed. Wear leveling periodically swaps blocks so that the pro-
grammings/erasures performed over the entire flash blocks can be even out. Bad
block management handles those blocks which have been worn out.
TrustZone. ARM TrustZone is a main-stream trusted execution environment
(TEE) implementation for mobile devices. It is a hardware-based technology
which provides security extension to ARM processors2. TrustZone separates two
worlds, a secure world and a normal world. The two worlds have isolated mem-
ory space and different privilege level to peripherals. Applications running in
the normal world cannot access memory space of the secure world, while ap-
plications running in the secure world can access memory space of the normal
world in certain conditions. The processor can only run in one world at a certain
time. A special Non-secure (NS) bit determines in which world the processor is
currently running. A privileged instruction Secure Monitor Call (SMC) switches
the processor between the normal and the secure world.

3 System and Adversarial Model

System model. Our system mainly consists of two entities (Figure 2): 1) a
mobile computing device; and 2) a remote cloud server. The mobile device is
equipped with a flash-based block device as external storage (e.g., an eMMC
card, a microSD card, or a UFS card) and Arm processors with TrustZone en-
abled. The flash memory is transparently managed by the F'TL, exposing a block
access interface. The TrustZone can separate two worlds in the mobile device, a
normal world running untrusted applications, and a secure world running trusted
applications (TA). The cloud server runs a version control system and interacts
with the mobile device. As the server is running as a cloud instance, its compu-
tational resources (i.e., computing power, data storage) can be easily scaling up
and down according to the need.
Adversarial model. In the mobile device, we mainly consider an adversary
(Figure 2) which performs data corruption attacks, i.e., data corruption malware.
This can be ransomware which encrypts a victim device’s data and asks for
ransom. This can also be a piece of trojan or backdoor malware that first steals
user data and then damages them locally in the victim device. We consider
the strong OS-level malware [14] which can compromise the regular OS running
in the TrustZone normal world and corrupt any data visible to the OS. Here
“data” especially refers to the information having been committed to the external
storage rather than those staying in the memory and not yet been committed.
The cloud server is assumed to correctly store and maintain the version-
ing data, and how to ensure integrity of the versioning data outsourced to an

2 TrustZone has been broadly supported since ARMv7.

-

1
I

' |trusted apps|\i
:\ | trusted OS

—_—1

‘)
1 | untrusted apps

1
i\| untrusted OS |

\
I
1
1
1
1
1
4

flash translation layer (FTL)

block access interface '

cloud server

NAND flash mobile device

flash-based block device

Fig. 2. Our system model. The part on the left is the architecture of the mobile device,
in which the components in yellow color are isolated from the untrusted OS.

untrusted remote server has been explored extensively in prior works [19, 11,
17]. Other assumptions include: 1) TrustZone is secure, and the malware cannot
compromise the secure world, including the trusted applications and data in it.
This is a reasonable assumption in the domain of TrustZone technologies [20].
Although a few security leaks [30, 24] have been found in TrustZone, hardening
TrustZone has been explored extensively in the literature [27] and is not our
focus. 2) The malware is not able to hack into the FTL. This is also reasonable
as the FTL is isolated from the OS (Figure 2) and there are no known attacks
which can bypass the isolation utilizing the limited block access interface exposed
by the flash device. 3) The communication channel between the mobile device
and the cloud server is assumed to be protected by TLS/SSL. 4) The malware
will not perform arbitrary behaviors like blocking user I/Os or conducting DoS
attacks which would be easily noticed by the device’s owner.

4 MobiDR

4.1 Design Rationale

To achieve the data recovery guarantee against the OS-level malware, MobiDR
relies on the versioning data in the cloud server as well as the most recent delta
stored in the local device. Periodically, MobiDR securely commits changes of data
(i.e. delta) in the local device to the cloud server (the backup phase). After a
malware attack, MobiDR will retrieve the versioning data from the server, apply-
ing the most recent delta (stored locally) to restore the data at the corruption
point (the recovery phase).

The backup phase. The backup phase happens periodically. After each suc-
cessful backup, the FTL will monitor write requests from the OS and, if a new
flash page is written, it will push the corresponding PBA into a stack and the

garbage collection on those new flash pages should be frozen® temporarily even
if they are invalidated. Meanwhile, the FTL will monitor write requests on some
reserved LBAs. Note that the LBAs are accessible to the OS, e.g., if a disk sector
is 512-byte, and a flash page is 2KB, every 4 sector addresses can be converted
to one LBA. If a secret write sequence on the reserved LBAs is observed by the
FTL, a new backup phase has been invoked by the backup app and the FTL
will enter the backup mode. In the backup mode, the backup app will work with
the FTL to extract the most recent delta data securely from the flash memory
and to correctly commit them to the cloud server. The backup app will issue
read requests (i.e., by writing the reserved LBAs) and, upon receiving a read
request, the FTL will: 1) pop a PBA from the stack, read the data stored in the
corresponding flash page, and identify the corresponding LBA; and 2) compute
a cryptographic tag over a concatenation of the data, the LBA, the current ver-
sion number as well as the sequence number (during each backup process, the
sequence number starts from 0, and is increased by 1 after each read request),
using a secret key; and 3) return the data, the LBA, and the tag for each read
request. Upon receiving a response from the FTL, the backup app will verify the
integrity of the data using the tag and the secret key. Once the stack is exhausted
by the FTL, the backup app will verify and commit all the delta data together
with their tags to the cloud server, and quit the backup mode. Note that critical
components of the backup app should be run in the TrustZone secure world to
avoid being compromised by the OS-level malware.

The recovery phase. Once a mobile device suffers from a malware attack and
the stored data are corrupted, a data recovery phase will be activated to restore
the data back to the corruption point. The malware is assumed to have been
detected [14] at some point of time (i.e., the detection point) and eliminated*
from the victim device and, therefore, the recovery app can be run in the normal
world. As the backup phase is activated periodically, the device should have
conducted a successful backup process (i.e., the most recent backup point) before
the malware is detected. The corruption point should be located either between
the most recent backup point and the detection point (if the malware detection
is effective and can detect the malware immediately) or before the most recent
backup point (if the malware detection suffers from false negatives). The recovery
app will restore the data at the corruption point by: 1) retrieving versioning data
from the remote server (correctness of the data is verified via the cryptographic
tags), and 2) extracting the most recent delta preserved locally in the flash
memory, and 3) approaching the corruption point by interacting with the user
following a binary searching manner (details elaborated in DRecover of Sec. 4.2).

3 An extreme case is that the device is almost filled and there are no unused blocks.
In this case, if there is a flash block which stores invalid data that have not been
backed up yet, MobiDR will back up those data immediately and garbage collection
can be immediately performed on this block.

4 If the malware is impossible to be eliminated, we can unplug the flash storage medium
from the victim device and plug it into a clean device for the recovery phase.

| version control server |

secure world Inormal world

flash-based block device

Fig. 3. The design overview of MobiDR.

4.2 Design Details

Overview. The overview of MobiDR is shown in Figure 3. The version control
server runs a version control system which allows storing and retrieving ver-
sioning data. The DRFTL is a special flash translation layer tuned for MobiDR
design, which can transparently manage the raw NAND flash and work with
the user-level apps for data backup and recovery. The DRBack app consists of
a client application (i.e. CA) which runs in the normal world (based on a rich
untrusted OS) and a trusted application (i.e. TA) which runs in the secure world
of TrustZone. The backup phase is conducted periodically by the DRBack app,
which communicates with both the DRFTL via the OS (for extracting delta data
from the flash memory) and the remote version control server (for storing the
delta data remotely). The recovery phase is conducted by the DRecover app. The
DRecover app communicates with the remote version control server (for retriev-
ing necessary versioning data) and the DRFTL (for extracting the most recent
delta preserved in the flash memory, reconstructing the data at the corruption
point as well as placing the data back to the flash memory). In the following, we
elaborate the design detail of each major component in MobiDR.

The version control server. The cloud server runs a version control sys-
tem [11,19] which allows the client to commit a new version of the data (e.g.,
via commit), or to retrieve an arbitrary historical version (e.g., via checkout).
In MobiDR, the data committed during each backup phase are the most recent
delta currently and the corresponding cryptographic tags. The data retrieved
during the recovery phase are the collection of deltas (and their corresponding
tags) from the initial version up to an arbitrary version. Each delta is a collection
of raw data newly stored to the flash memory pages.

DRFTL. The DRFTL will keep track of delta data (not yet committed re-
motely), protecting them from being deleted by the malware. It will also col-
laborate with the DRBack to correctly extract and commit the delta data, and
collaborate with the DRecover to restore the data to the corruption point.

To protect the delta data in the flash memory, we need to understand the
delta a bit. Here the delta means the changes of data in the flash memory. In
the user space, there are typically three operations: read, write, and delete. The
read operation usually does not generate delta. The delete operation is typically
handled by the OS as follows: the OS will mark the corresponding disk space
as invalid by updating its metadata which may cause an overwrite operation in
the flash memory. The write operation in the user space may either cause a new
write or an overwrite in the flash memory. For a new write, the new content
will be placed to a new PBA (corresponding to a physical flash page) in the
flash memory; for an overwrite, the obsolete content in the old PBA will be
invalidated, and the new content will be placed to a new PBA due to the out-of-
place update. Therefore, our observation is that, the new content generated since
the last backup process is always stored in the new PBAs and, therefore, we can
simply keep track of all the new PBAs in the flash memory, following the order
they are written. In addition, each flash page has an OOB area which typically
records its corresponding LBA. Therefore, the content in a PBA contains all the
information® needed for the recovery. Note that the malware cannot compromise
the delta as the flash memory performs the out-of-place update, and only the
garbage collection in the FTL can remove data.

To keep track of new PBAs, the DRFTL maintains a stack in the internal
RAM of the flash device. To avoid data loss due to unexpected instances like
power loss, we should periodically commit the data in the stack to the flash and,
once the backup phase is finished, the data associated with the stack can be
cleared from both the RAM and the flash. Once a backup phase is invoked, the
DRFTL will pop a PBA from the stack, read the content from the correspond-
ing flash page, and return it to the DRBack. The aforementioned step will be
terminated when all the delta data are extracted (i.e., the stack is empty).

In order to differentiate the backup/recovery phase with the normal use, we
define a backup and a recovery mode for the FTL, respectively. In the backup
mode, the FTL will exclusively work with the DRBack for extracting and com-
mitting the delta and, in the recovery mode, the FTL will exclusively work with
the DRecover to restore the data to the corruption point. Since only the DRBack
knows when to enter the backup mode, it should inform the DRFTL once it
launches the backup phase. This can be achieved by reserving some LBAs, and
the DRBack will perform writes on those LBAs with some secret sequence known
to the DRFTL. To avoid replay attacks, we can concatenate the sequence with
an index (increased by one upon a new backup phase) and encrypt it using the
secret key shared between the DRBack and the DRFTL. Similarly, the DRecover

5 During recovery, we can simply place the content back to the LBA in the flash
memory, since where the content will be physically located is not important.

will inform the DRFTL once it launches the recovery phase with another secret
write sequence on the reserved LBAs.

To prevent reclaiming flash blocks which store the delta data that have not
been committed remotely, the garbage collection on the delta data will be dis-
abled temporarily, but will be resumed as soon as a following backup is finished
(in which the delta data are committed to the remote server).

DRBack. The DRBack will work with the DRFTL to extract the most recent
delta data from the flash memory, and send them to the cloud server after
having verified their correctness. Note that the DRBack contains both a trusted
application (TA) running in the TrustZone secure world (mainly responsible for
verifying and committing the delta), and an untrusted client application (CA)
running the normal world (used as a proxy for the TA to communicate with the
DRFTL to extract the delta data).

Periodically, the TA of the DRBack will issue a secret write sequence (using
CA as a proxy) to the reserved LBAs, changing the DRFTL to a backup mode.
In the backup mode, the TA continuously reads a special LBA until having
extracting all the new delta data since the last backup process. When the DRFTL
receives a read request from the TA, it will read a flash page (the PBAs are kept
in the stack), and compute a cryptographic tag for the data of the page. To defend
against the replay attack, the current version number, the page sequence number,
the LBA and the data of the page are combined together when computing the
tag. The DRFTL will return the data of the page in the first read; the LBA,
the current version number, the page sequence number in the current version, as
well as the tag will be combined and returned in the second read. Therefore, to
extract the delta data stored at a single page, the TA needs to perform two read
operations. After all the new delta data are read, the DRFTL will inform the TA
(this can be achieved by responding with some special content to the read request
issued by the TA). The TA will verify the delta data and, if they are correct,
the TA will commit them to the cloud server. It will then send a confirmation
(together with a cryptographic tag, computed over the confirmation and the
version number via the secret key shared between the TA and the DRFTL) to
the DRFTL and, after the DRFTL has successfully verified the confirmation, it
will quit the backup mode and return to a normal state.

DRecover. The DRecover will collaborate with the DRFTL to restore the data
to the corruption point. The DRecover will first issue a different secret write
sequence to the reserved LBAs to change the DRFTL to the recovery mode;
it will then retrieve the most recent delta data from the flash memory. The
most recent delta data can be stored in another computing device or committed
remotely. Next, it will retrieve the most recent version of the data from the cloud
server, verify its integrity, and place them back to the flash memory. The user
needs to check whether this restored data version has any corruptions or not. If it
has no corruptions, the corruption point is located somewhere between the most
recent backup point and the detection point (case #1); otherwise, the corruption
point is located somewhere between the initial point and the most recent backup

10

point (case #2). After the recovery phase is finished, the DRecover will change
the DRFTL back to the normal state.

Handling case #1: The DRecover will first restore the data to the most recent
backup point, and then sort the most recent delta data based on the times-
tamps of each page in the increasing order (for simplicity, we call them the
sorted delta data). The DRecover places the first half® of the sorted delta data
back to the flash memory, and the user will check whether this restored version
contains corrupted data or not. If it contains, the corruption point should be
moved backwards; otherwise, the corruption point should be moved forwards. A
binary searching will be continued in either half, recursively. The number of user
involvement will be O(log [), where [is the total number of pages in the sorted
delta. Note that the user involvement seems to be unavoidable, as only the user
knows whether his/ her data were corrupted or not.

Handling case #2: The DRecover will retrieve a historical version from the remote
server which is at the middle of the initial point and the most recent backup
point, and work with the DRFTL to place this version back to the flash memory.
The user will check whether this restored version contains corrupted data or not.
If it does, the corruption point is located at a point even earlier; otherwise, the
corruption point is located at a point later. A binary searching will be continued
in either half, recursively. After a target version is located, the corruption point
can be further located similar to case #1. The number of user involvement will
be O(log n + log 1), when n is the total number of historical versions stored in
the remote server and [is the maximal number of pages in a delta.

5 Security Analysis and Discussion

Security Analysis. In the following, we show that MobiDR can ensure recovery
of data at the corruption point against the OS-level malware.

Any newly created delta can be correctly committed to the remote
server during the backup phase. The newly created data which have been
written to the flash memory will not be deleted by the garbage collection of the
DRFTL before they are committed to the remote server. Therefore, regardless
how the malware behaves at the OS level, e.g., over-writing the user data at the
block layer to invalidate them in the flash memory, writing arbitrary data to the
disk sectors, the new data will stay intact in the flash memory. Note that the
DRFTL is transparent to the OS, and will not be affected malware. The DRBack
runs in the user space, which is separated into two parts: one (CA) is running
in the normal world and acts as a proxy to communicate with the DRFTL, and
the other (TA) is running in the secure world and is responsible to verify the
extracted data and to commit them remotely after the verification. The malware
may affect the CA, e.g., when the CA is used as a proxy to extract data from
the DRFTL, the malware may corrupt the data passing through the untrusted

5 The description here is not very exact. In practice, a few pages together may belong
to the same atomic operation and cannot be separated.

11

OS. This corruption attack can be mitigated as the DRFTL will compute cryp-
tographic tags for the extracted data and, the corruption will be detected by
the TA which will not be affected by the malware. If the corruption is detected,
the TA will require the CA to extract the data again (note that if the corrup-
tion persists, the TA should notify the user, as there is a potential DoS attack);
others, the TA will send the extracted data, together with the associated tags,
to the server.

The most recent delta data will not be corrupted by the malware.
After the latest backup process, any new data created by the user since then,
cannot be compromised by the OS-level malware once they have been written
to the flash memory. This is because, the data stored at the flash memory are
not accessible to the OS, and can only be removed by the garbage collection of
the FTL; however, DRFTL has modified the garbage collection strategy so that
any newly created data, valid or not, will not be deleted from the flash memory
before they are correctly committed to the remote server.

MobiDR can always recover data at the corruption point during the
recovery phase. During the recovery phase, the device is always in a healthy
state, either because the malware has been eliminated from the victim device
or because a clean device has been used for recovery. Therefore, the DRecover
can run correctly in the OS. An arbitrary historical version of the data can be
retrieved correctly by the DRecover from the version control server (crytographic
tags are used to verify the correctness of a historical version upon retrieval). In
addition, the new data changes since the most recent committed version are
preserved in the flash memory, and are extractable by the DRecover. Being able
to have access to any version of the historical data, as well as the most recent
delta data, the DRecover is able to restore data at any point over the history,
surely including the corruption point.

Discussion. In the following, we discuss a few minor issues in MobiDR.

Sharing secret keys between the DRFTL and the TA. During initialization,
the device owner can generate the secret keys, and send them to the TA in the
secure world; in addition, the secret keys can be passed to the FTL as follows:
the FTL reserves an LBA and monitors the writes on this page; once the device
owner writes the secret keys to this LBA, the FTL will read it, copy the keys to
other area invisible to the OS, and clear the data in this LBA.

Handling device failures. If the device fails (e.g., suffering from power loss [22])
upon backup and the most recent delta has not been committed yet, the user
could try mobile device forensics [10] to extract the most recent delta from the
device, though there is no guarantee whether the delta can be extracted or not.
If the device is lost/stolen, there is still a possibility that the latest delta would
be backed up to the remote server if the “pickpocket” turns on the device and
network connection is available for the device. In the worst case, the user can at
least restore the data to the latest backup stored in the remote server. It seems
no approach can completely address the aforementioned limitation, unless the
device backs up every single operation to the remote server which is impractical.

12

The impact of “freezing” garbage collection. Freezing the garbage collec-
tion will not affect the system much because: 1) The garbage collection is only
frozen for those data not yet been committed remotely. 2) The garbage collec-
tion on the not-yet-committed data is only frozen for a short period, e.g., if the
device is backed up daily, the period is one day. 3) If the malware fills the entire
storage on purpose (i.e., no unused flash blocks), the backup operation will be
performed immediately, and the garbage collection will run normally after it.
Moving the entire DRBack into the TrustZone secure world. One alter-
native is to move the entire DRBack to the secure world to prevent DoS attacks
conducted by the malware. However, accessing the external storage in the secure
world is non-trivial. This may require incorporating extra software components
into the secure world, including disk driver and other components along the
storage path [14]. We will investigate this alternative in our future work.

6 Experimental Evaluation

We have implemented a prototype of MobiDR, which includes DRFTL, a DRBack
app, a DRecover app, and a server program. DRFTL was implemented by modi-
fying OpenNFM [15], an open-sourced flash controller framework written in C.
The cryptographic tag was instantiated using HMAC-SHA1. The DRBack app,
the DRecover app, and the server program were all written in C. The DRBack
app consists of two major software components (both were implemented in C):
one software component (CA) runs in the normal world, and the other software
component (TA) runs in the secure world of ARM TrustZone. Our TA relies
on the support of OP-TEE [3], an open source trusted execution environment
implementing Arm TrustZone technology, which has been ported to many Arm
devices and platforms.

Experimental setup. We ported the DRFTL to LPC-H3131 [2], a USB header
development prototype board with ARM9 32-bit ARM926EJ-S (180Mhz), 32MB
SDRAM, and 512MB NAND flash. After the DRFTL is ported, LPC-H3131 can
be used as a flash-based block device via USB 2.0. Both the DRBack (CA)
and the DRecover were run as an application in another electronic development
board Firefly AT0-3399J [1], equipped with Six-Core ARM 64-bit processor (up
to 1.8GHz) and 4GB Dual-Channel DDR3. AIO-3399J acts as the host comput-
ing device of the mobile device to perform I/Os on the flash storage provided
by LPC-H3131. Note that although the processor of Firefly AI0-3399J can sup-
port TrustZone, the manufacturer of this electronic board does not offer a free
support for TrustZone development. We instead measured the TA of DRBack in
TrustZone secure world provided by a cheap Raspberry Pi (version 3 Model B,
with Quad Core 1.2GHz Broadcom BCM2837 64bit CPU, 1GB RAM) [4], by
porting OP-TEET to it. The remote version control server was run by a desktop
(8 core Intel Core i7-9700K CPU, 3.60 GHz, 32GB RAM), which was connected
to a local area network in our lab, and the electronic boards (Firefly AT0-3399.J

" Currently OP-TEE has not supported TLS yet, which can be implemented as “a
glue layer between mbedTLS and the GP API provided [5]”.

13

<¢DRBack extracts data from flash (Firefly+LPC) -6-DRecover retrieves data from server (Firefly)

DRFTL generates tags (LPC) <¥DRecover verifies data (Firefly)
#-DRBack verifies and sends data (Raspberry Pi) -e-DRecover commits data to flash (Firefly+LPC)
1.2 60
-1 FYS —_ 50 6-\‘ —_—
2 v T
~ ~
2] 2]
S 08 S 40
= =
a3 06 a 30
£ s
2 2 2
g% 8
£ 02 ——r—— E 10 | RNee 6
=
0 - 0 =
0 20 40 60 80 100 0 20 40 60 80 100
Data Size (MB) Data Size (MB)
(a) The throughput of each component in the (b) The throughput of each component in
backup phase. the recovery phase

Fig. 4. Performance in the backup and the recovery phase.

and Raspberry Pi) were both connected to the same local area network. Note
that none of the prior works (Sec. 7) can ensure recoverability of the data at
the corruption point over time under an adversarial setting; therefore, we did
not experimentally compare MobiDR with them, considering that the goal of
MobiDR is different from all of them and the comparison would not be fair.
Evaluating The Backup Phase. The backup process is conducted by DRBack,
together with DRFTL and the remote version control server. The DRBack needs
to first extract data from the raw flash memory to the user space, by working
with the DRFTL. This sub-process is taken care by the CA of DRBack, which runs
in the normal world (rather than TrustZone secure world). The DRFTL computes
tags for the data being extracted. As shown in Figure 4(a), the throughput for
data extraction is approximately 1MB/s, which is regular for a USB 2.0 inter-
face. The throughput for computing the tags in LPC-H3131 is around 100KB/s.
This is reasonable for a low-power electronic board equipped with a 180MHz
processor. In practice, we can replace the cryptographic hash function SHA1
with a more efficient non-cryptographic hash function like XXH128, which was
shown 30 times faster than SHA1 [6].

After having extracting the data, the DRBack will verify integrity of the data
based on the associated tags, and send them (together with tags) to the remote
server if the verification is successful. This sub-process is taken care by the TA
of DRBack, which runs in the TrustZone secure world. As shown in Figure 4(a),
the throughput for these TA operations is approximately 250KB/s. The major
computation in the TA (running in the TrustZone of Raspberry Pi) is to verify
the correctness of the tag (HMAC-SHA1), which requires a similar computing
workload compared to the tag generation (running in the LPC-H3131). The
performance of the tag verification in Raspberry Pi is 2x-3x better than the
tag generation in LPC-H3131, which makes sense since Raspberry Pi is more
powerful than LPC-H3131.

Evaluating The Recovery Phase. The recovery phase is conducted by
DRecover, together with DRFTL and the remote version control server. If the
corruption happens after the most recent backup process, MobiDR will restore

14

the device by retrieving the most recent data version from the remote server, and
applying the local delta up to the corruption point. If the corruption happens
before the most recent backup process, it implies that the malware detection
cannot detect the malware timely, or suffer from false negatives in the past.
Therefore, the corruption point should be located anywhere from the initial data
version to the most recent data version. For this case, we can retrieve the most
recent data version, and localize the data version which is before but closest
to the corruption point. The data at the corruption point can be restored by
starting from the closest version, and applying the corresponding delta up to
the corruption point. In the following, we assess the performance of two key
steps: 1) retrieving the most recent data version from the remote server; and 2)
localizing the closest data version from the most recent data version locally. As
MobiDR performs data recovery by centering around the raw data in the flash
memory (rather than the traditional file data), we also access whether it can
recover a given file accurately or not.

Retrieving the most recent data version from the server. To retrieve the
most recent data version, DRecover will retrieve all the deltas from the server,
verifying them, and committing them back to the flash memory (by working with
the DRFTL). The experimental results are shown in Figure 4(b). The throughput
for data retrieval is around 50MB/s, which is reasonable since the communication
happens in a local area network. The throughput for data verification is around
9MB/s. This is because, Firefly AI0-3399J is a high-end electronic board with
performance comparable to the desktop. The throughput for data commit is
around 2.5MB/s. This is reasonable for a USB 2.0 interface. Compared to the
data extraction in Figure 4(a), the throughput for data commit is 2x faster.
This is because, the data extraction requires extra read operations for obtaining
the tags, but the data commit does not need to write the tags.

Localizing the closest data version. We have conducted an experiment in
which there are 64 data versions in total, and the delta size is 2MB (i.e., each
version will generate 2MB additional data compared to its immediate previous
version). After the DRFTL has retrieved the most recent data version, it will
localize a closest data version following a binary search manner, i.e., a new data
version will be restored in the device and the user will get involved to determine
how the “search” will be moved next. The results are shown in Table 1. We
can observe that, if the targeted data version is 32, it will be localized with the
minimal time, since the first version to be examined is version 32 based on the
rule of binary search, and the total number of user involvements is 1; similarly,
if the targeted data version is 16 or 48, it will take more time compared to
version 32, since DRFTL needs to first examine version 32, and then examine
version 16 or 48 (depending on the user feedback), and the total number of user
involvement is 2. Without knowing where is the close data version, binary search
would require at most log(n) user involvements, and the total number of versions
needed to be examined is also bounded by log(n).

Recovery rate. To evaluate whether MobiDR can recover a given file accurately
by placing the raw data back to the flash memory, we tested 100 sample files,

15

Closest version number|Time (s)|#User involvement
8 39.10 3
16 33.84 2
32 22.96 1
48 35.17 2
56 41.63 3

Table 1. The overhead for localizing a closest data version in DRecover, in which the
most recent data version is 64, and each delta size is 2MB.

covering 5 categories and 30 file types (see Table 2), with file size varying between
1MB to 100MB. The results show that MobiDR can accurately recover all of
them, which indicates a recovery rate of 100%.

category file type
text files txt,pdf,rtf,ppt,odp,doc
image files jpg,webp,tiff,gif, psd
video files |flv,mkv,3gp,mp4,wmv,webm,avi,f4v
audio files mp3,o0gg,wav,flac
others zip,bin,db,tar,img,exe, msi

Table 2. Summary of sample files used for testing the recovery rate.

7 Related Work

Continella et al. designed ShieldFS [16], a self-healing, ransomware-aware file sys-
tem. ShieldF'S can automatically shadow a copy whenever a file is modified and,
the shadow copy can be used to recover the file corrupted by the ransomware.
Subedi et al. proposed RDS3 [25], which hides backup data to an isolated storage
space for data recovery. Both ShieldFS and RDS3 cannot combat the malware
which can compromise the OS, as they are both deployed at the OS level.
Huang et al. proposed FlashGuard [21] to enable data recovery from ran-
somware attacks. FlashGuard needs to preserve all the historical versions of
“possibly” attacked data locally in the flash memory to maximize probability of
successful recovery. Wang et al. proposed TIMESSD [29] to enable data recovery
by retaining past storage states in the local SSD. FlashGuard and TIMESSD
try to support data recovery via the local version control, and both unavoidably
suffer from the limited storage space in the local device. SSD-insider (Baek et
al. [8]), and MimosaFTL (Wang et al. [28]) and Amoeba (Min et al. [23]) im-
proved FlashGuard by incorporating a ransomware detection into the FTL, so
that the local device does not need to preserve invalid data in the flash memory
if the ransomware is not detected. This can save local storage space, but the
malware detection unavoidably suffers from false negatives and, if a false nega-
tive happens, the data corrupted by the ransomware will become irrecoverable
as they are no longer preserved locally. SSD-Insider++ [9] further employed in-
stant backup/recovery and lazy detection algorithms to mitigate the data loss

16

due to false negatives. However, the “lazy detection algorithm” still suffers from
false negatives and, additionally, their design is only applicable to ransomware.

Guan et al. [20] proposed Bolt to enable system restoration after bare-metal
malware analysis. However, Bolt is specifically designed to enable system restora-
tion during the malware analysis, in which the malware analyst has a full control
over the malware. It cannot be applied to our scenarios, in which the malware
is out of the control of the victim, e.g., the malware may come anytime, and
may behave arbitrarily. Chen et al. designed mobiDOM [14, 13] which aims to
combat malware which comes any time. However, mobiDOM can only restore
data to a historical state, rather than the exact state at the corruption point.
In addition, mobiDOM relies on the malware detection which suffers from both
false positives and false negatives.

8 Conclusion

In this work, we have designed MobiDR, the first secure data recovery system
which can allow a victim mobile device to restore its data at the corruption point
when suffering from malware attacks. Security analysis and experimental evalu-
ation confirm that MobiDR can ensure recoverability of data at the corruption
point, at the cost of a modest extra overhead.

Acknowledgments. This work was supported by US National Science Foun-
dation under grant number 1938130-CNS, 1928349-CNS, and 2043022-DGE.

References

Firefly AIO-3399J. https://en.t-firefly.com/product/industry/aio_3399.
Lpc-h3131. https://www.olimex.com/Products/ARM/NXP/LPC-H3131/.

Open Portable Trusted Execution Environment. https://www.op-tee.org/.
Raspberry Pi 3 Model B. https://www.raspberrypi.org/products/
raspberry-pi-3-model-b/.

5. TLS support in OPTEE #4075. https://github.com/0P-TEE/optee_os/issues/
4075.

6. xxHash. https://cyan4973.github.io/xxHash/.

7. Mobile Malware. https://usa.kaspersky.com/resource-center/threats/
mobile-malware, 1998.

8. SungHa Baek, Youngdon Jung, Aziz Mohaisen, Sungjin Lee, and DaeHun Nyang.
Ssd-insider: Internal defense of solid-state drive against ransomware with perfect
data recovery. In Proceedings of ICDCS, pages 875-884, 2018.

9. Sungha Baek, Youngdon Jung, Aziz Mohaisen, Sungjin Lee, and Dachun Nyang.
Ssd-assisted ransomware detection and data recovery techniques. IEEE Transac-
tions on Computers, 2020.

10. Marcel Breeuwsma, Martien De Jongh, Coert Klaver, Ronald Van Der Knijff, and
Mark Roeloffs. Forensic data recovery from flash memory. Small Scale Digital
Device Forensics Journal, 1(1):1-17, 2007.

=W

17

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Bo Chen and Reza Curtmola. Auditable version control systems. In Proceedings
of NDSS, 2014.

Bo Chen, Reza Curtmola, and Jun Dai. Auditable version control systems in
untrusted public clouds. In Software Architecture for Big Data and the Cloud,
pages 353-366. Elsevier, 2017.

Niusen Chen and Bo Chen. Defending against os-level malware in mobile devices
via real-time malware detection and storage restoration. Journal of Cybersecurity
and Privacy, 2(2):311-328, 2022.

Niusen Chen, Wen Xie, and Bo Chen. Combating the os-level malware in mobile
devices by leveraging isolation and steganography. In International Conference on
Applied Cryptography and Network Security, pages 397-413. Springer, 2021.
Google Code. Opennfm. https://code.google.com/p/opennfm/.

Andrea Continella, Alessandro Guagnelli, Giovanni Zingaro, Giulio De Pasquale,
Alessandro Barenghi, Stefano Zanero, and Federico Maggi. Shieldfs: a self-healing,
ransomware-aware filesystem. In Proceedings of ACSAC, pages 336-347. ACM,
2016.

C Chris Erway, Alptekin Kiipgii, Charalampos Papamanthou, and Roberto Tamas-
sia. Dynamic provable data possession. ACM Transactions on Information and
System Security (TISSEC), 17(4):1-29, 2015.

Ertem Esiner and Anwitaman Datta. Auditable versioned data storage outsourc-
ing. Future Generation Computer Systems, 55:17-28, 2016.

Mohammad Etemad and Alptekin Kiipgii. Transparent, distributed, and repli-
cated dynamic provable data possession. In International Conference on Applied
Cryptography and Network Security, pages 1-18. Springer, 2013.

Le Guan, Shijie Jia, Bo Chen, Fengwei Zhang, Bo Luo, Jinggiang Lin, Peng Liu,
Xinyu Xing, and Luning Xia. Supporting transparent snapshot for bare-metal
malware analysis on mobile devices. In Proceedings of ACSAC, pages 339-349,
2017.

Jian Huang, Jun Xu, Xinyu Xing, Peng Liu, and Moinuddin K Qureshi. Flash-
guard: Leveraging intrinsic flash properties to defend against encryption ran-
somware. In Proceedings of ACM CCS, pages 2231-2244. ACM, 2017.

Archanaa S Krishnan, Charles Suslowicz, Daniel Dinu, and Patrick Schaumont.
Secure intermittent computing protocol: Protecting state across power loss. In
2019 Design, Automation & Test in Europe Conference & Ezhibition (DATE),
pages 734-739. IEEE, 2019.

Donghyun Min, Donggyu Park, Jinwoo Ahn, Ryan Walker, Junghee Lee, Sungyong
Park, and Youngjae Kim. Amoeba: an autonomous backup and recovery ssd for
ransomware attack defense. IEEE Computer Architecture Letters, 17(2):245-248,
2018.

Pengfei Qiu, Dongsheng Wang, Yongqgiang Lyu, and Gang Qu. Voltjockey: Breach-
ing trustzone by software-controlled voltage manipulation over multi-core frequen-
cies. In Proceedings of ACM CCS, pages 195-209, 2019.

Kul Prasad Subedi, Daya Ram Budhathoki, Bo Chen, and Dipankar Dasgupta.
Rds3: Ransomware defense strategy by using stealthily spare space. In Compu-
tational Intelligence (SSCI), 2017 IEEE Symposium Series on, pages 1-8. IEEE,
2017.

Sangat Vaidya, Santiago Torres-Arias, Reza Curtmola, and Justin Cappos. Com-
mit signatures for centralized version control systems. In IFIP International Con-
ference on ICT Systems Security and Privacy Protection, pages 359-373. Springer,
2019.

18

27.

28.

29.

30.

31.

Shengye Wan, Mingshen Sun, Kun Sun, Ning Zhang, and Xu He. Rustee: De-
veloping memory-safe arm trustzone applications. In Annual Computer Security
Applications Conference, pages 442—453, 2020.

Peiying Wang, Shijie Jia, Bo Chen, Luning Xia, and Peng Liu. Mimosaftl: Adding
secure and practical ransomware defense strategy to flash translation layer. In
Proceedings of the Ninth ACM Conference on Data and Application Security and
Privacy, pages 327-338, 2019.

Xiaohao Wang, Yifan Yuan, You Zhou, Chance C Coats, and Jian Huang. Project
almanac: A time-traveling solid-state drive. In Proceedings of the Fourteenth FEu-
roSys Conference 2019, pages 1-16, 2019.

Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and Y Thomas Hou.
Trusense: Information leakage from trustzone. In Proceedings of IEEE INFOCOM,
pages 1097-1105. IEEE, 2018.

Yihua Zhang and Marina Blanton. Efficient dynamic provable possession of remote
data via update trees. ACM Transactions on Storage (TOS), 12(2):1-45, 2016.

19

