
Poster: Data Recovery from Ransomware Attacks via File System
Forensics and Flash Translation Layer Data Extraction

Niusen Chen
Department of Computer Science,
Michigan Technological University

Houghton, MI, USA
niusenc@mtu.edu

Josh Dafoe
Department of Computer Science,
Michigan Technological University

Houghton, MI, USA
jwdafoe@mtu.edu

Bo Chen
Department of Computer Science,
Michigan Technological University

Houghton, MI, USA
bchen@mtu.edu

ABSTRACT
Ransomware is increasingly prevalent in recent years. To defend
against ransomware in computing devices using flash memory as
external storage, existing designs extract the entire raw flash mem-
ory data to restore the external storage to a good state. However,
they cannot allow a fine-grained recovery in terms of user files as
raw flash memory data do not have the semantics of “files”.

In this work, we design FFRecovery, a new ransomware defense
strategy that can support fine-grained data recovery after the at-
tacks. Our key idea is, to recover a file corrupted by the ransomware,
we can 1) restore its file system metadata via file system forensics,
and 2) extract its file data via raw data extraction from the flash
translation layer, and 3) assemble the corresponding file system
metadata and the file data. A simple prototype of FFRecovery has
been developed and some preliminary results are provided.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation; Hard-
ware security implementation.

KEYWORDS
Ransomware; Data Recovery; File System Forensics; Flash Transla-
tion Layer; Fine-grained
ACM Reference Format:
Niusen Chen, Josh Dafoe, and Bo Chen. 2022. Poster: Data Recovery from
Ransomware Attacks via File System Forensics and Flash Translation Layer
Data Extraction. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’22), November 7–11, 2022, Los
Angeles, CA, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3548606.3563538

1 INTRODUCTION
Computing devices including servers, personal computers, mobile
devices increasingly store critical data nowadays and, a large por-
tion of them use flash memory [3] as external storage. Ransomware
is turning to a significant threat to today’s computing devices. Two
common types of ransomware are locker ransomware and crypto-
ransomware. Locker ransomware locks the device to extort money.
This type of ransomware can be easily mitigated by unplugging the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9450-5/22/11.
https://doi.org/10.1145/3548606.3563538

storage medium from the victim device and plugging it to a healthy
device. Crypto-ransomware however, is difficult to combat, as it
encrypts files in the victim device using strong cryptography and,
the decryption keys can only be obtained after the ransom is paid.

The existing ransomware defenses [4, 5, 7–12] for computing de-
vices using flash storage purely rely on raw flash data for recovery,
and suffer from a significant limitation that, they only allow restor-
ing the entire raw flash memory data rather than the individual user
files. However, ransomware typically corrupts user files stored in
a victim device and the recovery after ransomware attacks should
be file-driven. For example, the user should be able to determine
what files need to be restored or which files should be restored
first. Those existing approaches [4, 5, 7–12] unfortunately are not
file-driven, as the raw flash memory data are located at the lower
storage medium layer and do not have the semantics of “files”.

To address the aforementioned limitation, we rely on both the
file system forensics and the raw flash memory data extraction.
Our key insights are: 1) Existing ransomware typically runs in
the user space, and does not have the privilege to modify the file
system metadata. Therefore, after ransomware attacks, it is possible
to restore the file system metadata of a corrupted file via the file
system forensics. 2) The ransomware either overwrites a victim
file with its encrypted version or directly deletes1 it after storing
its encrypted version. However, due to the out-of-place updates
performed in the underlying flash translation layer (FTL), the file
data overwritten/deleted by the ransomware in the user space will
be temporarily preserved in the flash memory [7, 8]. Therefore, it
is possible to extract the original file data of a corrupted file from
the FTL. By assembling both the file system metadata and the file
data, we may restore a victim file attacked by the ransomware. The
resulted design, FFRecovery, is a new ransomware defense strategy
specific for computing devices using Flash storage, supporting a
Fine-grained Recovery of victim user files.

2 BACKGROUND
Ransomware. A major threat nowadays comes from the crypto-
ransomware which encrypts victim data and asks for a ransom.
Typically, after hacking into a victim computing device, the ran-
somware will read a victim file, encrypt it, and 1) replace the victim
file with the encrypted file, or 2) write the encrypted file to a new
location and delete the victim file.
File system. File system is a method/data structure by which the
operating system can control how the user data can be stored
into/retrieved from the storagemedia. User data are typically viewed

1To really delete a file in the user space, the application always needs to overwrite it
with randomness or garbled information.

https://doi.org/10.1145/3548606.3563538
https://doi.org/10.1145/3548606.3563538
https://doi.org/10.1145/3548606.3563538


CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Niusen Chen, Josh Dafoe, & Bo Chen

as “files” and, every read/write operation on files will be translated
transparently by the file system into the read/write operation on the
external storage. To facilitate this translation, a file system usually
divides the storage into blocks, and stores the data in the blocks.
The file system will keep track of various bookkeeping information
(or metadata) for a file, e.g., file name, locations of corresponding
blocks in the disk, file creation time, etc. Based on whether a file
system implements journaling or not, we can simply classify it into
a journaling file system and a non-journaling file system.

The journaling file system usually keeps track of changes which
are not yet committed to the main file system by recording them in
a circular log called a “journal”. The journal would be very useful
for quickly restoring the system upon an unexpected power loss or
system crash. Oftentimes, the journal file systems may only keep
track of the stored metadata. They may also keep track of both the
stored data and the metadata depending on the implementations.
Popular journaling file systems include NTFS, EXT3, and EXT4. In
EXT4, the journal typically can be referenced with inode number
8 [1]. Different from the journaling file system, the non-journaling
file system does not have a journal. Popular non-journaling file
systems include exFAT, FAT series (FAT12, FAT16, FAT32) and EXT2.
A FAT file system consists of three main regions: boot region, file
allocation table (FAT) region, and data region. The boot region con-
tains basic file system information in the boot sector. The FAT table
is stored after the boot region and indicates the clusters allocated
to files. The data region contains all file data and metadata. The
metadata for files/directories are stored in a tree-like structure con-
tained in the data region, starting at the root directory. The nodes
in this tree are known as directory entries, and contain metadata
for the parent directory’s files/directories. The location of the root
directory is implied in the boot sector.
Flash memory. Flash memory especially NAND flash is turning to
a mainstream storage medium today. NAND flash consists of blocks
(typical block size is 16KB, 128KB, 256KB, or 512KB), and each block
consists of pages (typical page size is 512B, 2KB or 4KB). Compared
to traditional mechanical disks, NAND flash exhibits some unique
characteristics. First, its unit of read/program operation is a page,
but its unit of erase operation is a block. Second, it follows an
erase-before-write design, which means, re-programming a page
is not allowed before an erase operation is performed on the en-
compassing block. Third, each block only allows a limited number
of program/erase (P/E) cycles, i.e., the block turns unreliable when
its P/E cycles exceed the threshold and cannot be used to correctly
store data. Due to the aforementioned special characteristics, an
in-place update strategy is expensive as it requires first erasing
the entire encompassing block. Therefore, NAND flash prefers an
out-of-place update strategy in which an update is performed by
writing the new data to a new location and meanwhile invalidat-
ing the old data. To allow the traditional block-based file systems
(e.g., FAT32, EXT4, NTFS) to be used on flash storage, an extra
flash translation layer (FTL) has been introduced between the file
system and raw NAND flash. The FTL transparently manages the
special nature of flash memory, exposing a block access interface
externally. One key function implemented by the FTL is address
translation which translates the block addresses of the file system
to the physical flash memory addresses, by maintaining a mapping

table between them. Another key function is garbage collection
which reclaims invalid blocks, typically during the idle time.

3 SYSTEM AND ADVERSARIAL MODEL
Systemmodel. We consider a computing device which is equipped
with a flash-based block device as external storage. This type of
computing device is very common in real world. This can be a
server or a personal computer which is equipped with an SSD drive.
This can be also a mobile or an IoT device which is equipped with
an SD/miniSD/microSD card, an eMMC card or a UFS card. A block-
based file system (e.g., EXT4, FAT32, NTFS) is deployed to manage
the external storage.
Adversarial model. We consider crypto-ransomware which en-
crypts user data and asks for ransom money. The ransomware can
successfully run in the user space of a victim computing device. In
addition, it can obtain the user-level privilege, and hence can freely
open, read, write and delete user files. However, it cannot obtain
the kernel-level privilege, and hence cannot manipulate the kernel
as well as the system data belonging to the kernel. For example, it
cannot modify or delete the file system metadata.

4 OUR DESIGN
After a ransomware attack, FFRecovery aims to allow a victim user
to restore a file corrupted by the ransomware. In other words, the
user can freely select what files to be recovered and use FFRecovery
to restore them. To restore a file, we need to first restore its corre-
sponding file system metadata, figuring out all the disk locations
which store its file data. This can be achieved by file system foren-
sics, considering that the ransomware does not have the privilege
to corrupt the file system metadata. Next, we need to restore the
original data stored in the aforementioned disk locations. This can
be achieved by taking advantage of the out-of-place updates per-
formed in the underlying flash translation layer, extracting the file
data from the raw NAND flash.
Recovering the file system metadata by performing forensic
analysis over the file system. To compromise a file, the ran-
somware will read it into the memory, encrypt it, and 1) overwrite
the original file with the encrypted file, or 2) write the encrypted
file to the disk and delete the original file. In both cases, the file
system metadata of a given file may be restored by performing
forensic analysis over the file system. For journaling file systems
(e.g., EXT3 or EXT4), the original file system metadata can be ob-
tained by analyzing the journals. For non-journaling file systems
(e.g., FAT, exFAT), the original file system metadata can be obtained
by analyzing the boot sector and the directory entries.
Recovering the file data by data extraction in the FTL. To
reconstruct a file corrupted by the ransomware, merely recovering
its file systemmetadata is insufficient, as the metadata only contains
file information like the original locations of the file data at the block
layer (e.g., original disk sectors holding the file data). However, as
the ransomware has corrupted/deleted the file, the original block
locations have stored something else. Fortunately, the FTL performs
out-of-place updates. As shown in the example of Figure 1, the file
data were originally stored at block 2 in view of the file system and
the actual data were stored in flash memory location 1; after the
file data are corrupted/deleted by the ransomware, the new data
will be stored in flash memory location 4, but the old data are still



Poster: Data Recovery from Ransomware Attacks via File System Forensics and Flash Translation Layer Data Extraction CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Figure 1: Recovering file content by extracting raw flash data.
preserved in flash memory location 1. To extract the original file
data stored in flash memory location 1, there are two alternatives:
1) The OS can send the block location (here is 2) to the FTL and,
the FTL will search the old mappings and find out that block 2
was mapped to location 1. The FTL will then extract the data from
location 1 and send them back to the OS. 2) The FTL will restore
the old mapping so that block 2 is mapped back to location 1. Then,
the OS can simply read block 2 and obtain the original file data.
Operating FFRecovery in practice. After a victim computing de-
vice is attacked by the ransomware, the user will be noticed im-
mediately as the ransomware usually displays an on-screen alert.
As the user does not trust the victim device any more and, he/she
will restore the files from the victim device and store them to an-
other disk. The user should perform2 the following operations as a
root user: The user mounts a new disk, runs FFRecovery to recover
target files, and writes the recovered files to the new disk.
Limitations. FFRecovery canwork under the condition that the old
data/mappings are preserved in the flash memory. As the old data
and the old mappings have been invalidated by the ransomware,
garbage collection in the FTL may reclaim them eventually. There-
fore, FFRecovery needs to restore the files timely before the garbage
collection reclaims the corresponding locations. This is doable as the
garbage collection typically happens during idle time and, it only
reclaims the flash blocks with a large number of invalid pages. A
more reliable option would be periodically backing up the mapping
table (typically small in size) in the FTL and temporarily disabled
the garbage collection if the ransomware is present [5].

5 IMPLEMENTATION AND EVALUATION
Implementation. We used a Ubuntu virtual machine as a host
computing device (Ubuntu 18.04, 4G memory, 40G SSD). We built
a flash storage medium using LPC-H3131 [2] (with ARM9 32-bit
ARM926EJ-S 180Mhz, 32MB SDRAM, and 512MB NAND flash) and
porting to it an open-sourced flash controller OpenNFM [6]. The
flash storage medium was attached to the hosting device via USB
2.0. FAT16 was used as the file system of the host computing device.
OpenNFM was modified so that it can work with the OS to extract
the raw flash memory data. A tool was also developed in python3
to perform file system forensics to restore the file system metadata
and to restore a given file by working with the modified OpenNFM.
Evaluation. We first placed a file to the flash storage medium. To
simulate the ransomware behaviors, we then manually overwrote
the content of the file. Next, we used FFRecovery to restore the
file (restoring file system metadata via file system forensics and
extracting the corresponding file content from the FTL) and wrote
the restored file to the local disk. We repeated the aforementioned
2Blocking the ransomware before the recovery is highly recommended to prevent it
from disturbing the recovery process.

file size 1MB 5MB 10MB 50MB
File system forensics (s) 0.00046 0.00042 0.00042 0.00041
Read from the FTL (s) 0.3147 1.6141 3.1817 16.6811

Write to the local disk (s) 0.0025 0.0054 0.0081 0.0392
Table 1: The time needed for recovering a given file.

process under different file sizes, namely, 1MB, 5MB, 10MB, and
50MB, and measured the time needed for different components.
The experimental results are shown in Table 1. We can observe that:
1) File system forensics is fast and is not affected by the file size.
This is because we only need to analyze the file system metadata
of a specific file for recovery which is small and is not significantly
affected by the file size. 2) The time for reading the file content
from the FTL and writing the restored file to the local disk both
grow linearly (approximately) with the file size. This is reasonable
as the I/O overhead is determined by its size. In addition, reading
the file content from the FTL is more expensive (dominating the
time needed for recovery), because we read the file content from
the LPC-H3131 via a slow USB 2.0 interface, but write the recovered
file to the local disk via a fast SSD interface.

6 CONCLUSION
In this work, we have designed FFRecovery, a ransomware defense
strategy which can support fine-grained data recovery. FFRecovery
relies on file system forensic as well as flash translation layer to
extract raw data. A simple prototype of FFRecovery has been de-
veloped and some preliminary results are provided.

ACKNOWLEDGMENTS
This work was supported by US National Science Foundation un-
der grant number 1938130-CNS, 1928349-CNS, 2043022-DGE, and
2225424-CNS.

REFERENCES
[1] ext4 data structures and algorithms. https://docs.kernel.org/filesystems/ext4/

globals.html.
[2] Lpc-h3131. https://www.olimex.com/Products/ARM/NXP/LPC-H3131/.
[3] Ssd market share. https://www.t4.ai/industry/ssd-market-share.
[4] SungHa Baek, Youngdon Jung, Aziz Mohaisen, Sungjin Lee, and DaeHun Nyang.

Ssd-insider: Internal defense of solid-state drive against ransomware with perfect
data recovery. In 2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS), pages 875–884. IEEE, 2018.

[5] Niusen Chen and Bo Chen. Defending against os-level malware in mobile devices
via real-time malware detection and storage restoration. Journal of Cybersecurity
and Privacy, 2(2):311–328, 2022.

[6] Google Code. Opennfm. https://code.google.com/p/opennfm/.
[7] Le Guan, Shijie Jia, Bo Chen, Fengwei Zhang, Bo Luo, Jingqiang Lin, Peng Liu,

Xinyu Xing, and Luning Xia. Supporting transparent snapshot for bare-metal
malware analysis on mobile devices. In Proceedings of the 33rd Annual Computer
Security Applications Conference, pages 339–349, 2017.

[8] Jian Huang, Jun Xu, Xinyu Xing, Peng Liu, and Moinuddin K Qureshi. Flashguard:
Leveraging intrinsic flash properties to defend against encryption ransomware. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 2231–2244. ACM, 2017.

[9] Donghyun Min, Donggyu Park, Jinwoo Ahn, Ryan Walker, Junghee Lee, Sungy-
ong Park, and Youngjae Kim. Amoeba: an autonomous backup and recovery ssd
for ransomware attack defense. IEEE Computer Architecture Letters, 17(2):245–248,
2018.

[10] Peiying Wang, Shijie Jia, Bo Chen, Luning Xia, and Peng Liu. Mimosaftl: adding
secure and practical ransomware defense strategy to flash translation layer. In
Proceedings of the Ninth ACM Conference on Data and Application Security and
Privacy, pages 327–338, 2019.

[11] Xiaohao Wang, Yifan Yuan, You Zhou, Chance C Coats, and Jian Huang. Project
almanac: A time-traveling solid-state drive. In Proceedings of the Fourteenth
EuroSys Conference 2019, pages 1–16, 2019.

[12] Wen Xie, Niusen Chen, and Bo Chen. Enabling accurate data recovery for mobile
devices against malware attacks. In 18th EAI International Conference on Security
and Privacy in Communication Networks, 2022.

https://docs.kernel.org/filesystems/ext4/globals.html
https://docs.kernel.org/filesystems/ext4/globals.html
https://www.olimex.com/Products/ARM/NXP/LPC-H3131/
https://www.t4.ai/industry/ssd-market-share
https://code.google.com/p/opennfm/

	Abstract
	1 Introduction
	2 Background
	3 System and Adversarial Model
	4 Our Design
	5 Implementation and Evaluation
	6 Conclusion
	References

