CS 5472 - Advanced Topics in Computer
Security

Topic 7: Ransomware (2)

Spring 2021 Semester
Instructor: Bo Chen
bchen@mtu.edu
https://cs.mtu.edu/~bchen
https://snp.cs.mtu.edu

mailto:bchen@mtu.edu
https://cs.mtu.edu/~bchen
https://snp.cs.mtu.edu/

Crypto Ransomware —

* Encrypt the data, and ask for ransom

* Defenses:

* Detection: need to detect ransomware as soon as possible to prevent
ransomware from corrupting more data (UNVEIL introduced on Tuesday)

* What if before the ransomware is detected, some of the data have been encrypted by
the ransomware

» A better defense: detection + recovery (today)

A Little More on Detecting Ransomware

* File system access activities

* File system activities without ransomware are different from that with

ransomware

* Cryptographic primitives
* Block ciphers for encryption

Plaintext Plaintext Plaintext
ITTITITIT1T1] OTTTTTITTITT] OIITITITTTTT
Initialization Vector (1V)
OIOTTIITIIT 7] ——
block cipher block cipher block cipher
Key encryption Key encryption Key encryption
ITTITITIT1T1] OTTTTTITTITT] IITTTTTTITTT
Ciphertext Ciphertext Ciphertext

Cipher Block Chaining (CBC) mode encryption

What about Data Recovery?

* Back up data online, like using public cloud services (iCloud, Dropbox,
Google Drive, etc.)

* A few limitations for online backup solution
 What if | don’t have Internet connection?
* What if my Internet connection is low-bandwidth (2G/3G)?

* Even if | have high-bandwidth Internet connection (4G/LTE), | don’t want to pay for
the network usage. | will wait until | have free Wi-Fi to back up data

e Even if | have free Wi-Fi, | cannot do the backup continuously and hence the data in
the computer/mobile device are not synchronized with the data of the online
backup. Why?

What about Data Recovery?

* Manually/ Automatically back up data in the local storage periodically
* Pros: does not rely on network
* Cons:

* The backup of the entire data will occupy a lot of local storage space

* The local backup may be also corrupted by the ransomware

Copy-On-Write (COW)

* When the file system reads/ writes files, the data are actually read (by the
process) into the memory and written (by the process) back to memory

* Copy-On-Write in the file system:

* N processes read the same file, and only one copy of the file needs to be maintained
in the memory (rather than N copies)

* Only after one process modifies the file, a modified copy of the file will be created in
the memory in a new location, but the original copy of the file is still there

 How can | take advantage of COW for ransomware data recovery (you will
find more details in today’s paper presentation)?

File System Review

Applications’ view:

block device
interface: allow to
read/write a block
of any size and any
alignment.

file systems (FAT, NTFS, EXT4, ...),
implement system calls like open,
read, write, etc

Manage the mappings between
the applications’ view and the
block device’s view

Main Operations of A File System — Write System Call

$include <unistd.h>

ssize_t write(int fd, const void *buf, size_t count);

1-01-1

chunk1 chunk2 chunk3

Applications’ view: W

I

|
file system iFiIe system meta-data are used
-to keep track of each block

block device

Main Operations of A File System — Read System Call

$include <unistd.h>

ssize t read(int fd, void *buf, size_t count);

-0k

chunk1 chunk2 chunk3

Applications’ view:

¥

Read the meta-data to find out
location of each block

I block device

The Efforts of My Research Group on
Ransomware/Malware Defenses

Wen Xie, Niusen Chen, and Bo Chen. Incorporating Malware Detection into The Flash Translation Layer.
2020 IEEE Symposium on Security and Privacy (S&P '20), San Francisco, CA, May 2020 (extended abstract).

Peiying Wang, Shijie Jia, Bo Chen, Luning Xia and Peng Liu. MimosaFTL: Adding Secure and Practical
Ransomware Defense Strategy to Flash Translation Layer. The Ninth ACM Conference on Data and
Application Security and Privacy (CODASPY '19), Dallas, TX, USA, March 2019.

Le Guan, Shijie Jia, Bo Chen, Fengwei Zhang, Bo Luo, Jingqgiang Lin, Peng Liu, Xinyu Xing, and Luning Xia.
Supporting Transparent Snapshot for Bare-metal Malware Analysis on Mobile Devices. 2017 Annual
Computer Security Applications Conference (ACSAC ’17), Orlando, Florida, USA, December 2017
(Distinguished Paper Award)

Kul Prasad Subedi, Daya Ram Budhathoki, Bo Chen, and Dipankar Dasgupta. RDS3: Ransomware Defense
Strategy by Using Stealthily Spare Space. The 2017 IEEE Symposium Series on Computational Intelligence
(SSCI ’17), Hawaii, USA, Nov. 27 - Dec. 1, 2017.

Paper Presentation

* ShieldFS: A Self-healing, Ransomware-aware Filesystem

* Presented by Parker

ShieldFS: A Self-healing,
Ransomware-aware

Filesystem
Parker Young | CS5472 Spring 2021 | 3/18/21

Outline

e Ransomware
o Working at the Filesystem Level
o Modeling Filesystem Usage

e ShieldFS Specification
o Detecting Ransomware Filesystem Activity
o Detecting Cryptographic Primitives in Process Memory
o Automatic File Recovery

e ShieldFS Implementation
e Testing ShieldFS

o Cross Validation
o Testing against Unseen Samples
o Assessing Overhead

e Potential Limitations
e Conclusions

Ransomware

e Malware that encrypts data on a victim’s machine
o Then asks victim to pay a fee to decrypt the data

e A Nov 2015 survey found ~50% of victims paid the ransom
o From Jan-Mar 2016, >$209M worth of payments were made in the US alone

e Current ransomware is cryptographically strong
o Chances of successful recovery without paying the ransom have drastically decreased

e Current reactive and preventative approaches for ransomware attacks
aren’t completely effective

Working at the Filesystem Level

e Based on previous work, the authors look at monitoring ransomware activity

at the filesystem level
o Attempt to detect and revert changes made by ransomware

ware

datoy ShieldF S
BW R MY

\ 'd
{ Ransom-

R

Figure 1: On the right ShieldFS shadowing a file offended
by ransomware malicious write (MW), in comparison to
standard filesystems (on the left).

Modeling filesystem usage

e Need to determine if there exists a significant-enough difference between
benign FS usage and malicious FS usage

e The authors collected the benign model from 11 real-world computers

o The I/O Request Packets (IRPs) from the Windows systems are logged
m Basic unit of I/O Request in a Windows system
m Used when communicating between the kernel and drivers

e They then collected samples of how 383 different ransomware samples
interacted with a filesystem, based on the previous model

Table 3: We use these features for both our preliminary assessment (Section B) and as the building block of the
ShieldFS detector (Sections3). ShieldFS computes each feature multiple times while monitoring each process, on
various portions of filesystem activity, as explained in details in Section . We normalize the feature values according
to statistics of the file system (e.g., total number of files, total number of folders). This normalization is useful to
adapt ShieldFS to different scenarios and usage habits. The rightmost column shows a comparison of benign (- - -) vs.
ransomware () programs by means of the empirical cumulative distribution, calculated on the datasets summarized
in Tablel and®, respectively. We notice that ransomware activity is significantly different than that of benign programs
according to our features, suggesting that there is sufficient statistical power to tell the two types of programs apart.

Feature Rationale

#Folder-
lhisting

Description

Comparison

Number of folder-listing operations nor-
malized by the total number of folders in
the system.

Ransomware programs greedily traverse the filesystem
looking for target files. Although filesystem scanners
may exhibit this behavior, we recall that ransomware
programs will likely violate multiple of these features
in order to work efficiently.

#Files s must read all files before en

Read

Number of files read, normalized by the
total number of liles.

Ransomware proc
crypling Lthem.

0 0.20.40.60.8 1

#Files-
Written

Number of files written, normalized by
the total number of files in the system.

Ransomware programs typically execute more writes
than benign programs do under the same working
conditions.

Fales-
Renamed

Number of files renamed or moved, nor-
malized by the total number of files in the
system.

Ransomware programs often rename files appending
a random extension during encryption.

File lype
coverage

Total number of liles accessed, normalized
by the total number of files having the
same exlensions.

Ransomware largets a specilic sel of extensions and
strives to access all files with those extensions. Instead,
benign application typically access a [raction of Lhe
extensions in a given time interval.

Wiite-
Entropy

Average entropy of file-write operations.

Encryption generates high entropy data. Although
file compressors are also characterized by high-entropy
write-operations, we show that the combined use of all
se features will mitigate such false positives. More-
over, we notice that our dataset of benign applications
contains instances of file-compression utilities.

0 0.20.40.60.8 |

Detecting Ransomware Filesystem Activity

e A custom classifier is developed to classify malicious FS activity
o Uses both a process-centric and system-centric model

e Multiple classifiers are used concurrently to increase speed and accuracy
o Classifiers observe the system in intervals, or ticks
o Classifiers are run on different sets of data from within the system
o Classifiers are tiered to focus on both the long-term and short-term history

' ! ! Long-term
Global Model horizon

. Model 3 | ‘ Model 3
Model 2 1 Model 2 Model 2

, - ; Short-t
Model 1 | Model1 | Model1 | Model1 | Model1 | Model 1 [nommon

0g
Figure 2: Example of the use of incremental models.
At each interval, we check simultaneously multiple in-
cremental models at all applicable tiers.

Detecting Cryptographic Primitives in Process Memory

e Scanning a process’s memory for its key schedule can also lead to flagging

a process as ransomware

o Ransomware is known to use symmetric encryption per-file
o Ransomware wants to encrypt as many files as fast as possible

e Discovering these keys can also help to further save a user’s files

Automatic File Recovery

e |f a process is classified as “ransomware” for at least 1 tick, program memory

is scanned
o If akey is found, the process is suspended and the offended files are restored
o Otherwise, the system waits for K ticks of “‘ransomware” classification before taking action

e |f a process is classified as “suspicious”, the system-centric model is

queried
o “Suspicious” is given when the process-centric model cannot make a determination

e Any new process is classified in an “unknown” state until enough data is

gathered on it
o During this time, the first file that the process attempts to write to or delete is held in

quarantine by the system

ShieldFS Implementation

e C(Classifiers are implemented as random

forests of 100 trees

o Each tree outputs -7 (benign) or +71 (malicious)
o Sum of all results gets us final values between -

100 (highly benign) to +700 (highly malicious)
m Ties are “suspicious”

e 28 tiers of classifiers
o File set size intervals between 0.1% and 100%

e Whitelisting certain folders/files for
performance

sohedule”

o
&
8
&
<
&
=
S
&
b

J1032933(]

"process 1 is benign”. "process I is malicious: kill it and restore files"

"restore process 1 "delste process 2 fils copiss”
- Silss copisz B -
Disk drive i " Shadow drive

Figure 3: High-level overview of ShieldFS. The Detector
and the Shielder are Windows minifilter drivers, and the
CryptoFinder is kernel driver.

Testing ShieldFS

e Cross-validation to assess classifiers

Infect real users’ computers to assess the system
o Ransomware was correctly identified in all tests and original files were correctly restored

e Test ShieldFS against ransomware it had never seen before
Assess performance overhead of the system

Cross Validation Results

Without incremental, multi-tier models

—w— Process centric

—e— System centric

—»— Process centric

—e— System centric
10’ 10% 10* 10* 10° 10%

Fraction of files accessed (log. scale) Number of 1/O request packets (log. scale)

Figure 4: 10-fold Cross Validation: Average and stan- | Figure 5: 10-fold Cross Validation: TPR of process- and

dard deviation of TPR and FPR with process- vs. | system-centric detectors, with and without the incremen-
system-centric detectors. tal, multi-tier approach. FPR ranges from 0.0 to 0.0015.

Cross Validation Results

Table 4: FPR with One-machine-oflf Cross Validation

User False positive rate |%)]
Table 5: 10-fold Cross-Validation: Choice of K.

FPR TPR IRPs

0.208% 100% 35661
0.076% 100% 13822

Machine Process System Outcome

0.53 23.26 0.27
0.00 0.00 0.00
0.00 . 0.00
0.00 0.00
0.22 45.4. 0.15
0.00) 0.00
0.00 858.89 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 (.00 0.00

[—

0.038% 100% 67394
0.019% 99.71% o
0.019% 99.74% 104340
0.000% 99.74% 135324

2
3
1
D
6
7

Testing Against Unseen Samples

e A virtual environment that modeled a real-user’s system was setup
e 305 novel ransomware samples were acquired and tested
e 100% of ransomware-encrypted files were restored

Table 6:

ransomware families.

Ransomware
Family

Locky
‘

C r\,ptuLULku
Critroni
TorrentLocker
CryptoWall
Troldesh
CryptoDefense
PayCrypt
DirtyDecrypt
ZeroLocker

Total

Dataset of 305

unseen samples of 11 different

No.
Samples

l (:0"‘7)

Detection
Rate

150/154
72/73
20/20
17/17
12/12

8/8
7/8
5/6
3/3
3/3
1/1
298/305

(2(&2

(1(E«)

3 (1.0%)
1(0 3%

305

Assessing Overhead

——— Sequence 1 = Open + Read

EB.-u:kup happens (T = 3h) : H { { I I } } 1 } i { L } % [[
fir'lp i A e

File size ¥ ¥ F 7
E X X g3

200
—w— Sequence 3 — Open + Write (no backup)

il

Time [min]

Figure 7: Average (and standard deviation) perceived £
overhead introduced by ShieldFS on 5 real-users ma- ' o ¥
chines.

Figure 6: Micro Benchmark: Average overhead.

Assessing Overhead

Table 7: Measured storage space requirements on real-
users machines (7 = 3h) and cost estimation considering
$3¢/GB.

User Period Storage Required Storage Overhead Max Cost
[hrs] Max [GB] Avg. [GB| Max [%] Avg [%] [USD]

34 14.73 0.63 4.29 0.18 44.2¢
&7 .62 0.19 0.95 0.29 1.86¢
122 9.11 0.73 8.53 0.68 27.3¢
A7 241 (.56 5.49 1.29 7.23¢
8 1.00 0.39 3.35 1.28 3.00¢

Table 8: Influence of T on runtime and storage overhead.

7 Runtime Overhead Storage Space Overhead
[hrs] Avg [x] Std.dev [x] Max [GB| Avg [GB] Max [%] Avg [%]
0.263 0.0404 5.4838 0.4040 4.35:).586
0.262 0.0404 5.8 0.4875 0.720
0.261 0.0403 D.0768 0.4994 4.522 0.746
0.260 0.0403 7 0.5150 4.545 0.766

Potential Limitations

e Targeted Evasion is mostly infeasible

o The cost of performing this is high enough to deter most attackers from attempting to pursue it
e Multiprocess Malware is slightly more feasible, but still unlikely

o Would need to know the features values (T, K, etc...)

o Would need to encrypt slowly as to go undetected
o User can still restore encrypted files manually

e Memory scanning could be foiled by modern ISA extensions
o Could easily be remedied by new functionality to the system

e Other smaller/less-likely things
o Tampering with the Kernel
o Preventing Denial of Service

Conclusions

e System works at a low-level and shows that preventing ransomware from
happening in the first place is viable
e Works like a backup service, but should generally be faster than some

traditional backup services
o Essentially creates “instant backups” when a file is accessed

e Overhead is minimal enough that most users won’t perceive a difference
e Would like to see how such a system would work on other platforms/use-

cases
o macOS/Linux? What about Servers/Data Centers?

