
CS 5472 - Advanced Topics in Computer
Security

Topic 7: Ransomware (2)

Spring 2021 Semester
Instructor: Bo Chen

bchen@mtu.edu
https://cs.mtu.edu/~bchen

https://snp.cs.mtu.edu

mailto:bchen@mtu.edu
https://cs.mtu.edu/~bchen
https://snp.cs.mtu.edu/

Crypto Ransomware

• Encrypt the data, and ask for ransom

• Defenses:

• Detection: need to detect ransomware as soon as possible to prevent
ransomware from corrupting more data (UNVEIL introduced on Tuesday)
• What if before the ransomware is detected, some of the data have been encrypted by

the ransomware

• A better defense: detection + recovery (today)

A Little More on Detecting Ransomware

• File system access activities
• File system activities without ransomware are different from that with

ransomware

• Cryptographic primitives
• Block ciphers for encryption

What about Data Recovery?

• Back up data online, like using public cloud services (iCloud, Dropbox,
Google Drive, etc.)

• A few limitations for online backup solution
• What if I don’t have Internet connection?
• What if my Internet connection is low-bandwidth (2G/3G)?
• Even if I have high-bandwidth Internet connection (4G/LTE), I don’t want to pay for

the network usage. I will wait until I have free Wi-Fi to back up data

• Even if I have free Wi-Fi, I cannot do the backup continuously and hence the data in
the computer/mobile device are not synchronized with the data of the online
backup. Why?

What about Data Recovery?

• Manually/ Automatically back up data in the local storage periodically
• Pros: does not rely on network
• Cons:

• The backup of the entire data will occupy a lot of local storage space

• The local backup may be also corrupted by the ransomware

A better data recovery strategy?

Copy-On-Write (COW)

• When the file system reads/ writes files, the data are actually read (by the
process) into the memory and written (by the process) back to memory

• Copy-On-Write in the file system:
• N processes read the same file, and only one copy of the file needs to be maintained

in the memory (rather than N copies)
• Only after one process modifies the file, a modified copy of the file will be created in

the memory in a new location, but the original copy of the file is still there

• How can I take advantage of COW for ransomware data recovery (you will
find more details in today’s paper presentation)?

File System Review

Files (.doc, .pdf, .txt, …)

Physical storage medium
(hard disk drive, flash
storage, etc.)

file systems (FAT, NTFS, EXT4, …),
implement system calls like open,
read, write, etc

Applications’ view:

block device
interface: allow to
read/write a block
of any size and any
alignment.

Manage the mappings between
the applications’ view and the
block device’s view

Main Operations of A File System – Write System Call

=Applications’ view:
chunk 1 chunk 2 chunk 3

+ +

block device

file system File system meta-data are used
to keep track of each block

Main Operations of A File System – Read System Call

=Applications’ view:
chunk 1 chunk 2 chunk 3

+ +

block device

file system

Read the meta-data to find out
location of each block

The Efforts of My Research Group on
Ransomware/Malware Defenses

• Wen Xie, Niusen Chen, and Bo Chen. Incorporating Malware Detection into The Flash Translation Layer.
2020 IEEE Symposium on Security and Privacy (S&P '20), San Francisco, CA, May 2020 (extended abstract).

• Peiying Wang, Shijie Jia, Bo Chen, Luning Xia and Peng Liu. MimosaFTL: Adding Secure and Practical
Ransomware Defense Strategy to Flash Translation Layer. The Ninth ACM Conference on Data and
Application Security and Privacy (CODASPY '19), Dallas, TX, USA, March 2019.

• Le Guan, Shijie Jia, Bo Chen, Fengwei Zhang, Bo Luo, Jingqiang Lin, Peng Liu, Xinyu Xing, and Luning Xia.
Supporting Transparent Snapshot for Bare-metal Malware Analysis on Mobile Devices. 2017 Annual
Computer Security Applications Conference (ACSAC ’17), Orlando, Florida, USA, December 2017
(Distinguished Paper Award)

• Kul Prasad Subedi, Daya Ram Budhathoki, Bo Chen, and Dipankar Dasgupta. RDS3: Ransomware Defense
Strategy by Using Stealthily Spare Space. The 2017 IEEE Symposium Series on Computational Intelligence
(SSCI ’17), Hawaii, USA, Nov. 27 - Dec. 1, 2017.

Paper Presentation

• ShieldFS: A Self-healing, Ransomware-aware Filesystem

• Presented by Parker

ShieldFS: A Self-healing,
Ransomware-aware

Filesystem
Parker Young | CS5472 Spring 2021 | 3/18/21

Continella, A., Guagnelli, A., Zingaro, G., De Pasquale, G., Barenghi, A., Zanero,
S., & Maggi, F. (2016, December). ShieldFS: a self-healing, ransomware-aware
filesystem. In Proceedings of the 32nd Annual Conference on Computer Security
Applications (pp. 336-347).

Outline

● Ransomware
○ Working at the Filesystem Level
○ Modeling Filesystem Usage

● ShieldFS Specification
○ Detecting Ransomware Filesystem Activity
○ Detecting Cryptographic Primitives in Process Memory
○ Automatic File Recovery

● ShieldFS Implementation
● Testing ShieldFS

○ Cross Validation
○ Testing against Unseen Samples
○ Assessing Overhead

● Potential Limitations
● Conclusions

Ransomware

● Malware that encrypts data on a victim’s machine
○ Then asks victim to pay a fee to decrypt the data

● A Nov 2015 survey found ~50% of victims paid the ransom
○ From Jan-Mar 2016, >$209M worth of payments were made in the US alone

● Current ransomware is cryptographically strong
○ Chances of successful recovery without paying the ransom have drastically decreased

● Current reactive and preventative approaches for ransomware attacks
aren’t completely effective

Working at the Filesystem Level

● Based on previous work, the authors look at monitoring ransomware activity
at the filesystem level

○ Attempt to detect and revert changes made by ransomware

Modeling filesystem usage

● Need to determine if there exists a significant-enough difference between
benign FS usage and malicious FS usage

● The authors collected the benign model from 11 real-world computers
○ The I/O Request Packets (IRPs) from the Windows systems are logged

■ Basic unit of I/O Request in a Windows system
■ Used when communicating between the kernel and drivers

● They then collected samples of how 383 different ransomware samples
interacted with a filesystem, based on the previous model

Detecting Ransomware Filesystem Activity

● A custom classifier is developed to classify malicious FS activity
○ Uses both a process-centric and system-centric model

● Multiple classifiers are used concurrently to increase speed and accuracy
○ Classifiers observe the system in intervals, or ticks
○ Classifiers are run on different sets of data from within the system
○ Classifiers are tiered to focus on both the long-term and short-term history

Detecting Cryptographic Primitives in Process Memory

● Scanning a process’s memory for its key schedule can also lead to flagging
a process as ransomware

○ Ransomware is known to use symmetric encryption per-file
○ Ransomware wants to encrypt as many files as fast as possible

● Discovering these keys can also help to further save a user’s files

Automatic File Recovery

● If a process is classified as “ransomware” for at least 1 tick, program memory
is scanned

○ If a key is found, the process is suspended and the offended files are restored
○ Otherwise, the system waits for K ticks of “ransomware” classification before taking action

● If a process is classified as “suspicious”, the system-centric model is
queried

○ “Suspicious” is given when the process-centric model cannot make a determination

● Any new process is classified in an “unknown” state until enough data is
gathered on it

○ During this time, the first file that the process attempts to write to or delete is held in
quarantine by the system

ShieldFS Implementation

● Classifiers are implemented as random
forests of 100 trees

○ Each tree outputs -1 (benign) or +1 (malicious)
○ Sum of all results gets us final values between -

100 (highly benign) to +100 (highly malicious)
■ Ties are “suspicious”

● 28 tiers of classifiers
○ File set size intervals between 0.1% and 100%

● Whitelisting certain folders/files for
performance

Testing ShieldFS

● Cross-validation to assess classifiers
● Infect real users’ computers to assess the system

○ Ransomware was correctly identified in all tests and original files were correctly restored

● Test ShieldFS against ransomware it had never seen before
● Assess performance overhead of the system

Cross Validation Results

Cross Validation Results

Testing Against Unseen Samples

● A virtual environment that modeled a real-user’s system was setup
● 305 novel ransomware samples were acquired and tested
● 100% of ransomware-encrypted files were restored

Assessing Overhead

Assessing Overhead

Potential Limitations

● Targeted Evasion is mostly infeasible
○ The cost of performing this is high enough to deter most attackers from attempting to pursue it

● Multiprocess Malware is slightly more feasible, but still unlikely
○ Would need to know the features values (T, K, etc…)
○ Would need to encrypt slowly as to go undetected
○ User can still restore encrypted files manually

● Memory scanning could be foiled by modern ISA extensions
○ Could easily be remedied by new functionality to the system

● Other smaller/less-likely things
○ Tampering with the Kernel
○ Preventing Denial of Service

Conclusions

● System works at a low-level and shows that preventing ransomware from
happening in the first place is viable

● Works like a backup service, but should generally be faster than some
traditional backup services

○ Essentially creates “instant backups” when a file is accessed
● Overhead is minimal enough that most users won’t perceive a difference
● Would like to see how such a system would work on other platforms/use-

cases
○ macOS/Linux? What about Servers/Data Centers?

