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Abstract. Modern vehicles are largely controlled by many embedded
computers, known as Electronic Control Units (ECUs). The increased
use of ECUs has brought many in-vehicle security concerns. Specifically,
injection of malware into ECUs poses a significant risk to vehicle opera-
tion. Indeed, many ECU malware injection attacks have been performed,
and much work has been introduced towards mitigating these vulnerabil-
ities. A main defense is for ECUs to perform a self-attestation over their
firmware state. However, most current self-attestation solutions do not
enable runtime checking due to their high computational cost. Addition-
ally, existing solutions mostly do not incorporate any ECU self-repairing
in coordination with the attestation mechanisms.
In this work, we have designed FSAVER, a highly efficient self-attestation
and self-repair framework for in-vehicle ECUs. For the self-attestation,
we adapt highly efficient spot-checking techniques, so that the firmware
can be checked periodically at runtime. To perform these attestations,
we rely on the TEE already equipped within each ECU. For self-repair,
we take advantage of the isolated flash memory controller (FMC) in the
storage device. Specifically, we coordinate it with the update mechanism
and self-attestations to guarantee that the latest benign firmware ver-
sion can always be restored. To realize this while malware is running, a
special mechanism has been carefully developed to notify the FMC of
the malicious presence.

Keywords: Autonomous Vehicles, Firmware Attestation, Self Repair,
Trusted Execution Environment, Flash Memory Controller, Flash Trans-
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1 Introduction

Modern vehicles increasingly contain many specialized computers, mostly known
as Electronic Control Units (ECUs). These embedded real-time ECUs perform
specialized tasks, many of which are safety critical vehicle operations such as
controlling the brakes, throttle, or steering. Vehicles today can contain up to
150 ECUs [17]. With the advent of autonomous vehicles, these ECUs are gaining
more responsibilities and so require more sophisticated software.
⋆ Corresponding author.



2 Josh Dafoe, Job Siy, Niusen Chen, and Bo Chen

To facilitate the transmission of control and communication signals between
ECUs, the original Controller Area Network (CAN) protocol was introduced in
1986. Additionally, to provide users with diagnostic information and the ability
to connect to the CAN bus, an OBD-II port has been introduced. This has been
mandated on all new vehicles in the US since 2009 [51]. The control and com-
munication signals sent over the CAN are essential information, used by many
ECUs to initiate their safety-critical behavior. For example, the airbag control
module receives information from deceleration sensors, yaw rate sensors, and
seat occupancy sensors, all of which need to communicate properly in order to
activate the airbags [49]. Upon airbag activation, the airbag control module com-
municates with the engine control module to cut off fuel supply which prevents
fire [47]. If any one of the mentioned ECUs are compromised with malware,
then the entire airbag deployment system may fail during a collision, or even be
initiated during normal vehicle operation.

To introduce such malware to an ECU, an attacker would need to perform
ECU reprogramming. Usually, reprogramming of ECUs is performed over the
CAN bus. To do this, a diagnostic tool connected to the bus will initiate a
reprogramming mode. During this mode, new software is sent to the target
ECU. A widely deployed protocol which enables such a reprogramming mode is
Unified Diagnostic Services (UDS). Before initiating the reprogramming mode,
(and so allowing arbitrary manipulation of the ECU code) UDS performs an
authentication of the diagnostic tool. This allows anyone with a valid diagnostic
tool to enter programming mode [29]. This is the only authentication that UDS
performs. Consequently, anyone who can pass this authentication can typically
write arbitrary code to any in-vehicle ECU. Unfortunately, this authentication
can usually be passed even without access to a valid diagnostic tool, enabling
malware to be written directly to a target ECU [19,29,31]. Therefore, any com-
promised device connected to the CAN bus is able to reprogram any target ECU.
These compromised devices include mobile phone apps, OBD-II dongles, or even
other ECUs [7, 15,28,53].

To mitigate such attacks, one main strategy has been to employ a passive
defense [50] solution which aims to detect malicious behavior, then perform
some isolation and restoration. Towards accurate detection of malicious behav-
ior, many intrusion detection systems have been implemented [16, 18, 20, 57].
These systems aim to identify malicious messages being sent over the CAN bus
by a compromised device (e.g. an ECU, OBD-II dongle, etc), and localize that
device [9, 37,56]. Upon this detection and localization, [30] proposes several po-
tential mitigation measures by placing the target ECU in a safety mode, or
disabling the attack messages. However, they do not provide explicit methods to
achieve this, and have no evaluation of their method. To provide such explicit
restoration means, [23] proposes enabling a roll back to the original firmware
before resetting the ECU, which allows a restoration of the compromised ECUs.

Another approach to detecting malware on an ECU has been to explicitly
check the firmware contents, rather than performing detection based on adver-
sarial CAN messages. This approach has several advantages. For example, ECU



FSAVER: Firmware Self-attestation and in-Vehicle ECU Repair 3

malware does not always cause malicious behavior on the CAN bus, meaning that
such malware may go undetected by CAN-based intrusion detection methods.
However, checking of the firmware contents will immediately reveal any mali-
cious code injections. One such firmware content based detection mechanism is
to perform a self-attestation, where the entire firmware content is usually checked
against a signature provided by the OEM [13, 35, 38, 41, 42, 52]. A few of these
self-attestation solutions check this signature only immediately after writing it
to the flash memory [35,38,52]. However, performing this check only once may
not be sufficient [25,38,41]. To resolve this, several solutions rely on isolated soft-
ware (i.e. bootloader, hardware security modules, etc) which performs an attes-
tation upon each reboot before loading the firmware into memory [13,25,41,42].
However, there is still need for a good runtime self-attestation solution [25, 38].
A challenge in ECU self attestation schemes has been the strict real time re-
quirement that ECUs have [8, 25], making it difficult to implement a runtime
self-attestation. In particular, since ECUs are usually low power embedded sys-
tems, the operations required to verify a cryptographic signature over the entire
firmware are very time consuming. Towards providing such an efficient runtime
self-attestation scheme, Kaster et al. [25] propose organizing the firmware into
d blocks with b cells per block, then “slicing” the blocks so that one cell from
each block is in a slice. Each slice can be checked individually. This allows a
probabilistic self-attestation which is much more efficient than other designs.
However, this solution still requires expensive cryptographic operations (CBC-
MAC) for the attestation, and requires the use of additional secure hardware
which is expensive.

In addition to the need for an efficient runtime self-attestation scheme which
is adapted to the in-vehicle real time requirements, there is a need for quickly
restoring the old firmware upon malware detection [8, 35, 38]. Mansor, et al [35]
proposes enabling such restoration by temporarily storing old firmware on a “cen-
tral communication unit”. However, their design allows only one firmware backup
at a time, so that restoration is possible only after a single initial attestation.
When performing runtime self-attestation, a persistently available restoration
mechanism is desirable. Dafoe et al [23] adapted a firmware rollback mechanism
which was built into the flash memory controller software. This allows an au-
tomatic implicit backup of the old firmware version, taking advantage of the
out-of-place updates nature of NAND flash memory, and the isolation of the
flash memory controller. However, this rollback mechanism was adapted for a
intrusion detection approach rather than a self-attestation.

In this work, we introduce FSAVER, which is a Firmware Self Attestation
and in-Vehicle ECU Repair design. FSAVER is highly scalable (as demonstrated
in Section 6), and conforms to the real-time requirement of a runtime attestation.
We achieve this design by utilizing existing hardware components to develop two
functions that will run on each ECU: self-attestation, and self-repair.

Self-attestation. In order to regularly check the firmware contents for mal-
ware, we need a trusted entity to perform regular attestations (i.e. a trusted audi-
tor). Typically, ECUs are equipped with ARM Cortex-A or Cortex-M [43–45,55]
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CPUs which have TrustZone capabilities [32,33]. The TrustZone is a hardware-
level security feature built into the processor which enables a trusted execution
environment (TEE, introduced in Section 2.3) isolated from the normal insecure
execution environment. Even if the ECU firmware is compromised, the execu-
tion running in the TEE secure world remains uncompromised. Thus, we can
establish the TEE secure world within each ECU as the trusted auditor. As
mentioned above, typical in-vehicle self-attestation solutions [13,35,38,41,42,52]
will hash the entire firmware image to check its integrity against a signature
provided by the OEM. This solution is usually viable when checking a small
firmware image during boot (i.e. not runtime). However performing runtime at-
testation in this way over large firmware images will compromise the real-time
requirement for in-vehicle ECUs [8, 25]. In cloud storage applications, however,
a highly efficient data checking solution known as spot checking has been used
for some time [5,24] which challenges a small subset of the data periodically (In-
troduced in Section 2.1). Therefore, we can adapt the spot checking technique
to the in-vehicle scenario, using the TEE as the auditor.

Self-repair. Once compromised firmware is detected, the next step is to
quickly restore it to the latest benign firmware. Our insight is that the ECU
firmware is typically stored on a flash memory medium [11, 21] managed by an
isolated Flash Memory Controller (FMC, introduced in Section 2.2). This iso-
lation ensures that even if the ECU firmware is compromised, the FMC flash
memory management software remains intact. Our key observation is that the
software running on the FMC will usually perform out-of-place updates, con-
forming to the unique hardware nature of flash memory. This implies that any
updates to the ECU firmware will only invalidate rather than delete the original
code. Therefore, by manipulating the garbage collection strategy implemented by
the FMC, this invalidated code can always remain on the flash memory medium.
Then, we can efficiently restore the latest benign firmware by simply rolling back
the invalidated code. To perform this repair, the FMC would need to be aware of
the firmware corruption. Therefore, we develop a secure notification mechanism
between the TEE and FMC.

2 Background

2.1 Remote Data Integrity Checking (RDIC)

Remote data integrity checking enables a client to check the integrity of data out-
sourced to any storage provider. Such RDIC schemes were originally introduced
primarily for cloud storage applications, and the primary RDIC schemes are
Provable Data Possession, (PDP) [4,5] or Proof of Retrievability (PoR) [24,46].
The essential idea is that rather than checking the entire data, the data are
viewed as a collection of blocks, with a small random subset periodically se-
lected for integrity checks. This approach is known as spot checking, and it is
able to detect data corruptions with an arbitrarily high probability for a given
amount of corruption over the entire data [4, 5]. To enable such spot checking,
verification tags are computed over each block. These tags may be constructed
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in either a privately or publicly verifiable manner [5]. In the privately verifiable
schemes, the same private key which generated the tags is used in data integrity
verification. In the publicly verifiable schemes, the verification relies on a public
key associated with the private key originally used in tag generation. In general,
the publicly verifiable schemes are much more expensive in terms of the compu-
tations performed for both generating and verifying the integrity proof due to
the use of asymmetric cryptographic primitives. After generating the tags, both
these and the data are outsourced to the storage provider. The “setup phase” in
an RDIC scheme involves both generation of the tags, and distribution of the
tags and data. After the setup phase, the “verification phase” (in our adapta-
tion, we call this the “attestation phase”) starts, during which a client can issue
challenges to the server, requesting a proof that a random subset of the data
are stored correctly. In response, the storage provider will use the challenged
data and tags to compute a proof. Importantly, the size of this proof is indepen-
dent of the number of blocks challenged, significantly improving the efficiency
of verification, and enabling the ability to aggregate proofs over any number of
arbitrarily selected blocks. The proof is returned to the client, who can check its
validity based on the maintained keys.

2.2 Flash Memory

Typically, in-vehicle computers are equipped with NAND flash memory to store
their firmware image [11, 21]. This is used in vehicles due to its very high I/O
throughput, which is necessary due to the real-time requirements. However,
NAND flash has some unique hardware properties. NAND flash is organized
into many contiguous storage chunks known as blocks, each containing a cer-
tain number of pages. The read and program (write) operations always occur
over pages, while the erasure operation is over entire blocks. In order to perform
a program operation, the encompassing block data should be erased. However,
each block can only sustain a finite number of program/erase cycles before it be-
comes unreliable. Therefore, to manage this unique hardware nature, it is more
economical to perform writes to a new page rather than the original data loca-
tion. This is known as an out-of-place updates strategy. Upon a programming
operation, this strategy results in the data for a constant logical location to end
up in a different physical location. To manage this, the NAND flash also per-
forms address translation by maintaining a dynamic mapping between the logical
and physical locations. Another mechanism for relocating data is known as wear
leveling which regularly swaps blocks to evenly distribute programming/erasure
operations. Upon moving to a new physical location, the previous physical page
is marked as invalid. Once a block is full of invalid pages, it can be removed,
and so the garbage collection mechanism will eventually perform an erasure over
it. These sophisticated NAND flash management operations require a firmware
layer on top of the memory hardware. This firmware layer is usually either a flash
translation layer or a flash file system. This firmware layer is implemented on a
dedicated embedded processor known as the Flash Memory Controller (FMC).
Essentially, the FMC is isolated from the host computer, such that if the host
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OS is compromised, any software running in the FMC will remain intact. Addi-
tionally, the FMC presents a very limited read/write interface to the host OS,
and so has a very limited attack surface.

2.3 Trusted Execution Environment (TEE)

Many processors today are equipped with a Trusted Execution Environment
(TEE) such as Intel SGX, AMD SEV/SME/TSME, and ARM TrustZone. The
TEE allows a sensitive application to run in a secure memory area, where the
application code and data can be isolated at the hardware level. The secure
memory area and execution state are known as the secure world, while all other
memory and computation is known as the untrusted world. Typically an operat-
ing system is running in the untrusted world so we refer to this as the host OS.
Typically a TEE enabled application has two components, a trusted applica-
tion (TApp) running in the secure world, and an untrusted application (UApp)
running on the Host OS. Therefore, the TApp component is protected even if
the host OS is compromised. Additionally, there is an interface for UApp to call
predefined functions on the TApp. Further, TEE enables a mechanism called
sealing, where any data which needs to be persistently stored, such as keys,
can be securely stored on the host device. Typically, in-vehicle ECUs use em-
bedded systems processors, many of which are ARM based. Specifically, many
ECUs [43–45, 55] are equipped with ARM Cortex-A or Cortex-M CPUs, which
have TrustZone capabilities enabled [32,33].

2.4 In-Vehicle Network Architecture

Today’s in-vehicle electronics systems are typically organized into a domain
based architecture [2], in which the Electronic Control Units (ECUs) are or-
ganized into functional domains, which are collections of functionally related
ECUs. The ECUs in each domain are connected to each other via a shared CAN
FD bus. CAN FD was introduced in 2012 as an extension of the original CAN.
CAN is a protocol for communications between many nodes connected by two
wires, where each message is broadcast to all other connected nodes. Compared
to the original CAN protocol, CAN FD supports 64 byte messages in each data
frame, and an increased throughput up to 5MB/s (CAN is capped at 1MB/s).
Due to the broadcast nature of the CAN FD bus, all ECUs in a domain can
freely broadcast messages to all other ECUs in their domain. At the “head” of
each domain is a dedicated gateway unit [22]. Essentially, gateways are spe-
cial ECUs which, rather than containing low-power embedded processors, are
equipped with much more powerful processors. Gateways act as an intermediary
between domains, providing the ability for inter-domain communications [22].
Additionally, gateways are equipped with capabilities to communicate with ex-
ternal networks for functions such as over-the-air updates. As mentioned in Sec-
tion 1, an OBD-II port has been mandated in the US since 2009 [51], providing
direct external physical access to the CAN FD bus. Due to the domain-based
architecture, however, when communicating with a particular ECU through the
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Fig. 1. System Model.

OBD-II port (e.g. during reprogramming), all messages are sent through a gate-
way before being forwarded to the target ECU. Recently, a zonal architecture
has been introduced, where rather than being organized by functional domains,
ECUs will be organized by geographical zones. In this model, the ECUs in each
zone still share a CAN FD bus, and at the head of each zone is a zonal gateway.
In this paper, when we refer to a “domain”, it may be applied to either domains
or zones, depending on the vehicle architecture.

3 Models and Assumptions

3.1 System Model

We consider a typical vehicle consisting of multiple ECUs connected to a CAN
FD bus (later in the paper, we refer to this simply as CAN). The ECUs are
separated into a few domains, where each ECU in a domain may communi-
cate freely within that domain. Without loss of generality, our solution focuses
mainly on interactions within a single domain. Our prototypical domain con-
tains one gateway unit, which acts as an intermediary between domains. The
typical ECUs are low power embedded systems, while the gateway contains far
more powerful processing capabilities. Each ECU is equipped with a processor,
RAM, and flash memory. The flash memory is managed by a flash memory con-
troller (FMC) which runs software isolated from the host OS (Section 2.2). This
software performs out-of-place updates to manage the unique hardware nature
of flash memory. Additionally, the processor is equipped with a TEE on which
a secure world is enabled. In the gateway, this can be on TrustZone, SGX, or
SME/TSME, depending on the gateway CPU, while in the other ECUs, this will
usually be TrustZone. In the secure world, we run a trusted application (TApp),
which can directly communicate only with an untrusted application, (UApp) run-
ning in the normal world. UApp has kernel level privileges, which is typical in
real-time operating systems [36]. Thus, UApp can directly access the read/write
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interface provided by the FMC. Additionally, UApp can send communication mes-
sages over the CAN FD bus (via communication with the CAN controller). Note
that a valid firmware update will always pass through the gateway before ECU
reprogramming (Section 2.4).

In the gateway, TApp is equipped with a certificate from the OEM which can
be established securely during vehicle manufacturing. Further, we assume that
a valid firmware image is always equipped with a signature signed by the OEM
private key, and that an adversary will not obtain this key, an assumption which
is standard in self-attestation schemes [35, 41, 42, 52]. The existence of a shared
secret key (Kd) between TApp in all ECUs in a domain is also assumed. Within
each ECU, there is a key (Ks) and counter (γ) shared between TApp and FMC.
The length of all keys is κ. All the shared secrets can be established securely
during manufacturing.

3.2 Adversarial Model

The firmware of any in-vehicle computer may be compromised and misbehave.
Specifically, an adversary may cause an ECU to enter into reprogramming mode
via any means of connecting to the in-vehicle network (e.g. OTA-updates, di-
agnostic tools, remote OBD-II connection, etc.). During this time, the code of
UApp which is stored in the flash memory will be modified. This may result in
malicious behaviour such as disruptions to ECU operation or sending malicious
CAN messages (Adversary I ). Additionally, the malware is in between TApp and
FMC, and so can arbitrarily manipulate the communications between them (Ad-
versary II ). The Adversary II may perform any of the following attacks which
manipulate the communications between TApp and FMC: 1) Manipulation of mes-
sage content during transmission. 2) Generating arbitrary message responses on
the fly (without the knowledge of any secrets). 3) Attempt to imitate one of
the trusted components (a spoofing attack). 4) Delay the communications. 5)
Block the communications completely (a DoS attack). We do not consider an
adversary which will shut down the TEE completely. Both Adversary I and II
are computationally bounded.

3.3 Assumptions

Our design relies on a few assumptions: 1) the TEE is secure (Section 2.3), a
common assumption for any TEE-based applications [12]. 2) The FMC is secure
(Section 2.2). This assumption is also reasonable as the FMC is isolated from
the OS by the storage hardware [54]. 3) The initial firmware on a given ECU is
benign. 4) If there is no malware in the flash memory, then there is no malware
in the RAM. This implies that if there is malware in RAM, then necessarily
there is malware in the flash memory (this is the contrapositive). Note that the
converse statement is not necessarily true. An implication of this assumption is
that misbehaviour will always indicate malware is present in flash memory.
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4 FSAVER

4.1 Design Overview

To ensure that the in-vehicle ECUs are always malware-free, we take an approach
of explicitly checking the firmware contents. To do this, we use a self-attestation.
Our self-attestation design improves on existing solutions by incorporating an
efficient runtime checking by using a spot checking based RDIC scheme (Sec-
tion 2.1). In particular, we employ UApp as the storage provider, and TApp as the
client analogue, performing regular checks over the committed firmware “data”.
To enable an efficient RDIC scheme in the in-vehicle scenario, we carefully adapt
the setup and attestation phases.

In addition to checking the firmware contents and so detecting malicious code,
ensuring that the ECUs are malware-free requires some active response. To en-
able this, we use self-repair mechanisms within FMC. The first step towards self
repairing is for FMC to become aware of a malicious presence through notification.
Next, FMC will rollback to the latest benign firmware, which is enabled by ensur-
ing that the old firmware data are maintained and locations are known. Next,
a reboot is initiated so that the malware is replaced in memory by the benign
firmware.

4.2 Self-attestation

Setup phase. As established above (Section 1), a typical ECU update strategy
is to initiate a reprogramming mode by authenticating some flashing device [29]
over CAN via a protocol like UDS1. When the flashing device is a physical
diagnostic device, it is attached to the OBD-II port. With the rise of over-the-
air updates [27], updates can now be sent directly to a gateway, which then acts
as the flashing device, performing authentication with the target ECU.

Once authenticated, the flashing device can send arbitrary code to the ECU.
This code may be malicious, so it is essential to check whether it was provided by
the OEM. Towards achieving this, the most natural solution which incorporates
RDIC is to use a publicly verifiable RDIC scheme. The OEM would generate
publicly verifiable tags, and each TApp would store an OEM certificate to verify
RDIC proofs. However, using a publicly verifiable scheme is much less efficient
than a privately verifiable scheme (Section 2.1). Consequently, our design adapts
a privately verifiable scheme. In order to do this, the key used in tag generation
must also be used during attestation. However, if the OEM generates these tags
(as in the publicly verifiable case), then its private key must be shared with all
the ECUs. This would involve complex key management and potential security
vulnerabilities. FSAVER addresses these challenges by leveraging the gateway
generate tags before the firmware reaches the target ECU.

We observe first that the benign new firmware contents will always pass
through the gateway before it is received by the target ECU (Section 2.4). In

1 FSAVER does not modify UDS.
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Fig. 2. A Sequence diagram for attestation, notification and rollback. Valid indicates
no malware detected while invalid indicates malware. Note that the diagram uses "alt"
(alternative) fragments to show different paths of execution based on conditions.

FSAVER, as in the existing solutions [13,35,38,41,42,52], the OEM will initially
provide a signature over the new firmware. As the new firmware is passed through
the gateway, TApp will verify the signature using its OEM certificate. In this
way, the gateway TApp checks whether the received firmware is from the OEM.
Next, the privately verifiable tags must be generated. The gateway TApp, having
verified the firmware source, will generate these tags using Kd, the private key
which is shared between all TApp in the domain. Next, the firmware, along with
the generated tags, are written to the target ECU. Since the tags were generated
using Kd, which is shared between TApp in all domain ECUs, the target ECU
TApp is able to perform a self-attestation (as described below).

Sometimes, the target ECU may be the gateway itself. In this case, we ob-
serve that there are multiple gateways which communicate with one another via
their network interfaces. Therefore, another connected gateway can perform the
role typically designated to the domain gateway (i.e. considering the gateways
together as a domain).
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Attestation phase. Once the new firmware and privately verifiable tags are
stored in the target ECU, the attestation phase will begin. We establish an
epoch of duration Tepoch so that within each epoch, one spot checking self-
attestation will occur. To perform such a attestation, TApp will act as the client
in an RDIC scheme, randomly selecting which blocks will be challenged. This
challenge will be generated close to the beginning of the epoch, as it is a very
quick operation, and can typically be scheduled at any time. This quick challenge
allows a duration close to Tepoch for the remainder of the attestation phase.
This consists of UApp receiving the challenge and, acting as the storage provider,
generating a proof that the challenged blocks are stored properly. Upon receiving
the proof, TApp will perform verification. The verification results will either be
valid or invalid, indicating that the firmware is benign or malicious respectively.
This approach provides a wide time window within each epoch to perform proof
generation and verification, allowing these processes to be flexibly scheduled
without compromising the real-time requirements of the system.

4.3 Self-repair

Notification. Upon malware entering the ECU, FMC, which performs the self-
repair, should be aware as soon as possible. To become aware of this, we have
designed a notification checking mechanism which is activated each epoch in the
FMC. To receive a notification, we rely on the key length κ, a security parameter
l, as well as the key (Ks) and counter (γ) which is shared between TApp and
FMC.

First, we define a pseudo random function (PRF) as f : {0, 1}κ × {0, 1}∗ →
{0, 1}l. Upon computing self-attestation results, TApp will compute m = f(Ks, γ)
then increment γ. Next, if the attestation results are valid, TApp will write m to
the flash storage at a location agreed upon with FMC (we call this location the
“notification address”). If the results are invalid, TApp will write an arbitrary,
unrelated value to the same location.

To receive this notification, FMC will have a built in hardware timer which
triggers a timer interrupt at the end of each epoch. To handle this interrupt,
FMC will also compute m = f(Ks, γ) then increment γ. FMC then reads the value
m′ from the notification address. If m and m′ match, then there is no malware
present. Otherwise, FMC will know malware is present and so can initiate self-
repair.
Rollback. Once FMC is aware of a malicious presence, FMC should be able to
rollback to the previous benign firmware state. To enable this rollback, there
are two challenges: 1) The old firmware should be present on the flash storage
device, and 2) this data should be easily located.

Essentially, solving challenge 1 requires modifying the garbage collection pol-
icy, which typically would erase the old firmware data soon after it is invalidated
(Section 2.2). Our solution is to coordinate our garbage collection strategy in
time with ECU reprogramming, so that we can ensure any activated rollback will
always be from malware to the latest benign firmware. In FSAVER, garbage col-
lection is disabled when the original firmware is invalidated, after a new firmware
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image is written. This preserves the old firmware for rollback. Garbage collec-
tion is re-enabled for the invalidated firmware only when the new firmware is
invalidated and replaced by another update, allowing old firmware versions to
be replaced in sequence.

Before GC is re-enabled on the invalidated firmware, however, it is crucial
to ensure that it does not erase the latest benign firmware. To do this, we need
to determine whether the active firmware or the invalidated firmware (i.e., the
previous version) is the latest benign version before proceeding with reprogram-
ming. This is verified through a self-attestation over the active firmware. There
are two possible self-attestation results:

1. Valid Result: If the self-attestation confirms that the current firmware is
benign, garbage collection is enabled before reprogramming. This allows the
old firmware data to be reclaimed.

2. Invalid Result: If the self-attestation indicates that the active firmware
is compromised, a self-repair is initiated to restore the previous firmware,
which is ensured to be the latest benign version (Section 5.2). After restoring
the firmware, garbage collection is enabled to remove the identified malware
before reprogramming.

In both scenarios, the latest benign firmware is overwritten during subsequent
reprogramming. This ensures that the firmware to be restored upon activating
rollback is always the latest verified benign version. A proof of this is given is
Section 5.2.

Solving challenge 2 requires extending the address translation policy, which
upon writing the new firmware would typically replace the old logical to physical
mapping with the new one (Section 2.2). In order to restore the old firmware,
the old mapping simply needs to be maintained. To ensure this, we reserve some
space as a backup mapping table.

Recall that prior to reprogramming, we ensured (in solving challenge 1) that
the active firmware is the latest benign version (i.e., the version to which we
want to roll back). Thus we can simply save the mapping table in this state
prior to reprogramming to maintain its location. Since the corresponding data is
maintained as established in challenge 1, these mappings will continue to point
to the correct firmware. Therefore, upon restoring this mapping table, the latest
benign firmware will also be restored.
Reboot. Upon rolling back to the latest benign firmware in the flash storage,
malware will still be contained in the ECU RAM and be running on the CPU. To
remove the malware from RAM and run the benign firmware again, the target
ECU should simply reboot. Fortunately, this reboot can easily be initiated by
TApp. However, in order to always initiate this reboot, TApp should always be
aware of when rollback is completed by FMC. When self-attestation verification
returns a invalid result, TApp can always be assured that rollback will be per-
formed. Thus, in this case, TApp can initiate a reboot after the epoch expires,
since by this time, FMC would have checked the results and performed rollback.
However, there is a case where self-attestation verification returns a valid result,
yet there is still malware present, and rollback is subsequently performed by FMC
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(see Section 5) while TApp is unaware. To make TApp aware of this, TApp will al-
ways read from the notification address at then end of each epoch. TApp will then
check whether m′, the value read, matches m, the previously generated shared
random value. If it does match, then the special case did not occur. Contrarily,
if it does not match, then this case did occur and a reboot should be performed.
A safety-focused discussion on when this reboot should be performed is given in
Section 7.2.

5 Security Analysis

5.1 Self-attestation

Setup. This is the phase during which an adversary would write malicious
firmware to the target ECU. The aim would be to perform this writing so that
malware is not detected by the self-attestation. To perform such an attack, tags
would need to be generated so that verification of a self-attestation proof using
Kd would always return valid results. We show this to be infeasible through the
two possible attacker strategies:

1. The attacker obtains the OEM private key (with key length κ) and uses this
to sign the malware. Subsequently, the attacker will enter reprogramming
mode with the target ECU and transmit the malware through the gateway.
Then, the gateway will verify the signature and generate tags using Kd.
Thus, if the adversary can obtain the OEM private key, then this attack can
be successfully performed. Assuming that the OEM will properly secure this
key, the best strategy is for the attacker to randomly guess it with probability
1

2κ
.

2. The attacker obtains the key Kd (with key length κ) and uses this to generate
tags for the malware. Subsequently, the attacker will enter reprogramming
mode either 1) directly with the target ECU, bypassing the gateway which is
typically involved in the ECU reprogramming, or 2) through a compromised
gateway, which will forward malware to the ECU regardless of signature
verification results. Thus, if the adversary can obtain Kd and bypass the
gateway, then this attack can be successfully performed. Since the TEE
sealing mechanism (Section 2.3) will secure the storage of Kd on the target
ECU, so that it is inaccessible to the adversary, the best strategy is for the

attacker to randomly guess Kd with probability
1

2κ
.

Attestation. Periodically, TApp will challenge a random subset of the firmware
blocks. For each attestation, the probability of successfully selecting “corrupted”
blocks to challenge is at least Pm = 1 − (1 − β)c [5], where c is the number of
blocks being challenged, and β is the proportion of blocks containing at least one
bit of corruption. For α attestations, this probability is Pdetect = 1− (1−Pm)α.
As an example, when c = 100, β = .01, and α = 5, Pdetect = .993 2.
2 Here, there is a design trade-off between the number of blocks and the number of

audits performed to detect a given β proportion of malware. For smaller c, it will
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Upon challenging “corrupted” blocks, several adversarial responses by UApp
are possible. Specifically, five different methods may be used by the Adversary
II, as outlined in Section 3:

1. For method 1, UApp may attempt to modify the challenged data so that it
can pass the challenge. However, UApp does not have access to Kd, required
to generate valid tags on the fly. Additionally, UApp does not have immediate
access to the previous firmware content or tags, which may be used to pass
an attestation. Therefore, the best strategy is to guess Kd with probability
1

2κ
, then generate tags for the malware. This guessing is infeasible for a

computationally bounded adversary, especially within duration Tepoch.
2. For method 2, UApp will attempt to generate some data or tags which will

result in computing a valid proof. This is again not feasible for a computa-
tionally bounded adversary, which cannot access Kd.

3. For method 3 (spoofing attack), there is no sensible attack.
4. For method 4 and 5, a response will be delayed greater than duration Tepoch.

This will result in TApp generating a invalid verification result.

Due to the infeasible nature of performing these attacks within the capabil-
ities of the Adversary II, challenging “corrupted” blocks will always result in a
invalid verification result within TApp. In all these cases, TApp is assured that
there is malware present, since misbehaviour will always indicate malware is
present in flash memory (Assumption 4 in Section 3).

5.2 Self-repair

Notification. When the timer interrupt is triggered in FMC, it will compute
m = f(Ks, γ) and compare this with the value m′ contained at the notification
address. If m does not match m′, then FMC will automatically trigger rollback.
The security goal is that upon a invalid verification result from TApp, rollback
will always occur. Upon a valid verification result, we ensure that rollback is
not performed unless malware is present in the ECU. There are three cases to
consider:

Case 1: Invalid verification result, with malware present. In this case,
TApp will not reveal the value m to UApp. We consider the Adversary II, which
may employ five different methods, as outlined in Section 3. Using method 1, 2,
or 3, UApp would need to generate m. The best strategy is to guess both Ks and
γ, then compute m using f . The probability of correctly guessing Ks, however

is
1

2κ
, which is negligibly small for sufficiently large κ. Using methods 4 and

5, the timer interrupt in FMC would trigger before any value is written to the
notification address. Therefore the value m′ which is read will not match m.

Case 2: Valid verification result, with malware present. In this case,
TApp will reveal the value m to an adversarial UApp. We again consider the

take more attestations (a higher α) to detect malware, but each attestation will be
more efficient, so that the real-time requirement is met.
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Adversary II. If the adversary does not manipulate the writing of m to the
notification address, then FMC will not perform rollback. However, UApp does
not always know whether TApp computes valid or invalid verification results,
and so may still manipulate the communications between TApp and FMC. Using
methods 1, 2, and 3, the value m′ written to the notification address will very
likely be different than the value m provided by TApp. Therefore, FMC will perform
rollback. Using methods 4 or 5, the timer interrupt in FMC would again trigger
before any value is written to the notification address. Therefore the value m′

which is read will not match m, and rollback will be triggered.
Case 3: Valid verification result, no malware present. In this case

there is no adversary present, so the correct notification m′ = m = f(Ks, γ),
generated by TApp, will always be written to the correct location. Therefore, a
rollback will never be triggered in this case.
Rollback. To demonstrate the security of our firmware rollback mechanism, we
prove the following theorem:

Theorem 1. For any firmware version Pn+1, if Pn+1 is identified as malicious,
then the rollback mechanism will restore the system to Pn, which is the latest
benign version prior to Pn+1.

Proof. We have established in the above analysis that under our adversarial
model, if Pn+1 is identified as malicious, then the rollback mechanism will be
triggered. First, we show that the last active firmware (malicious or benign) Pn

can always be restored to. That is, that through our garbage collection man-
agement and address translation management, the data and mappings for the
previous firmware version Pn can always be restored (i.e the data and mappings
for Pn are always present when Pn+1 is active).

We can prove this by induction. The initial firmware update is from P0 to P1.
Our garbage collection polity is that before this reprogramming GC is enabled.
However, there is no previous firmware version to reclaim, and so nothing occurs.
GC is disabled for any new writes, and so P0 is maintained. Additionally, by
copying the mapping table prior to the update, the locations for the firmware
P0 are maintained. Therefore, P0 can always be restored while P1 is active.

Now, suppose that for Pk such that 1 < k ≤ n, the firmware can be rolled
back to Pk−1. Prior to updating from firmware version Pn to Pn+1, GC is enabled
on firmware version Pn−1, and so it may be reclaimed. Again, as GC is disabled
for new writes, the data for Pn is maintained when Pn+1 is written. Additionally,
as the mapping table for Pn is saved prior to writing Pn+1, the locations can be
restored.

Now, we have to show that Pn, the prior firmware version, which is rolled
back to, is always the latest benign version. This proof is by induction. By
our assumption 3 (Section 3), the initial firmware version P0 is always benign.
Now, assume that for any firmware version Pk, where 0 < k ≤ n, that if Pk

is identified as malicious, then Pk−1 is the latest benign version prior to Pk.
Now, suppose that the firmware version Pn+1 is identified as malicious and so
rollback is initiated. Note that before writing Pn+1 to the flash memory, a self-
attestation was performed over Pn. If the verification results were invalid, then
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Pn−1 was restored to replace Pn, which, by the inductive hypothesis, is the latest
benign firmware. If the results were valid, then Pn was already the latest benign
firmware. Therefore, in both cases, Pn, at the time of rollback, is the latest
benign firmware version. ⊓⊔

Reboot. Essentially, in order to effectively perform the rebooting after rollback,
this will be triggered by TApp. Since we have established that rollback will occur
only when there is malware present, it is simply required that TApp is always
aware when rollback is performed. There are two cases when rollback may be
performed:

1. When a self-attestation verification returns invalid results: In this
case, TApp is aware of the invalid results because it is directly performing
the self-attestation verification. TApp can initiate a reboot after the epoch
expires, knowing that rollback has occurred.

2. When a self-attestation verification returns valid results: In this
case, rollback can still occur due to other issues, such as message manipu-
lation by an adversary (Adversary II) which is not yet detected via spot-
checking. In this scenario, recall that TApp checks the value m′ read from
the notification address at the end of each epoch. If m′ differs from the pre-
viously generated value m, it indicates that FMC has detected a problem and
performed rollback. Therefore, TApp can still initiate a reboot even when
the verification results were valid, but rollback has been triggered due to
external manipulation.

This demonstrates that FSAVER ensures that TApp is aware of all rollback sce-
narios and can initiate a reboot as needed. For a discussion on the timing and
implications of this reboot, refer to Section 7.2.

6 Implementation and Evaluation

Implementation. We have implemented the self-attestation component (in-
cluding setup and attestation phases) in real-world hardware. As an ECU, we
used a Raspberry Pi 3B+ [1] (With 1.4GHz 64-bit quad-core ARM Cortex-
A53 CPU, and 1GB LPDDR2 SDRAM) with TEE enabled. We implemented
UApp, which will receive the challenge from TApp and compute an RDIC proof,
under the host OS Raspbian Stretch. TApp, which will generate the challenge
and verify the received RDIC proof, was implemented by porting OP-TEE [39]
(Open Portable Trusted Execution Environment) to the Raspberry Pi via the
Raspbian-TEE open source project [6]. For our RDIC scheme, we used the pri-
vately verifiable scheme from Compact PoR [46]. Additionally, we have imple-
mented a rollback mechanism on the USB header development prototype board
LPC-H3131 [34] (with ARM9 32-bit ARM926EJ-S, 180Mhz, 32MB of SDRAM,
and 512MB NAND flash). We have ported [48] the open source NAND flash man-
ager OpenNFM [10] to the LPC-H3131, and verified the feasibility of a rollback
based self-repair mechanism.
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Procedure Component Throughput (KiB/s)
Setup (one time) Gateway TApp 22.04

Challenge Generation ECU TApp 363.64
Proof Generation ECU UApp 28.52
Proof Verification ECU TApp 15.43

Rollback (Mapping Restoration) ECU FMC 1724

Table 1. Average throughput (KiB/s) for setup, attestation, and rollback.

Evaluation. To evaluate the efficiency of the self-attestation component in both
TApp and UApp, we timed the setup and attestation phases. For evaluating self-
repair, we timed the rollback phase. We present our results in Table 1 as through-
put rates. This table demonstrates the amount of data which can be attested,
and mapping content which can be rolled back in given time.

For the setup phase, we timed the generation of privately verifiable tags in
the gateway TApp. Note that this is a “one-time” operation, occurring only when
a new firmware update is received. Additionally, while our implementation uses
the Raspberry Pi 3B+, gateway units typically contain much more powerful
processing capabilities. For the attestation phase, we have timed three distinct
phases: 1) The challenge generation (TApp), 2) the proof generation (UApp), and
3) the proof verification (TApp). As anticipated (Section 4), we observe that the
challenge generation throughput is significantly higher than the other proce-
dures. This is because the computation is limited to generating a few random
numbers. Additionally, we observe that the proof verification is slower than the
proof generation despite the proof verification being a more lightweight compu-
tation. We suspect this is because the proof generation is run on the host OS,
while verification is run in the TrustZone secure world. The TrustZone TEE is
generally much slower than the host OS, and the Raspberry Pi is not optimized
for the use of TrustZone. In general, our attestation results demonstrate that a
small spot checking based self-attestation would be quickly performed, since the
amount of data being checked is small.

For the rollback phase of self-repair, we have timed the restoration of the
backup mapping table. The observed mapping restoration throughput of 1724KiB/s
results in an associated data restoration rate of 836MiB/s. This is very quick,
considering that the typical ECU firmware size is much less than 20MB [14].

These results also effectively demonstrate the scalability of FSAVER. Specifi-
cally, we have demonstrated above (Section 5) that by using the spot checking-
technique, checking a small constant number of blocks will have the same prob-
ability to detect a given proportion of firmware corruption, regardless of the
overall firmware size. Therefore, the attestation cost can be constant for any
firmware size. In contrast, the rollback phase scales linearly with the firmware
size. However, by only restoring mappings, we scale the data restoration speeds
significantly, enabling us to restore any reasonably sized ECU firmware very
quickly.
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7 Discussion

7.1 Limitations

During the setup phase for self-attestation, FSAVER first requires the gateway
to compute a signature over a hash of the entire firmware image. However, doing
this requires the full firmware image to be contained in gateway memory at one
time. Due to memory constraints, this may not always be feasible. To mitigate
this, this authentication may use a hash chain rather than a single hash over the
complete data. As each block is processed, its tags can immediately be generated
and stored in gateway memory while the block’s contents are sent to the target
ECU. Only if the authentication passes will the complete set of tags be released.

Another limitation of FSAVER is that the adversary may find some way to
shut down the TEE, and thus disable TApp. If this occurs, FMC will still be aware
(since an invalid m′ will be present at the notification address), but TApp will
not be able to perform the reboot step upon self-repair. Thus, the only way to
clear the ECU memory and restore functionality would be to manually reboot
the ECU. This is why we cannot consider the adversary which can shut down
the TEE (Section 3).

It may be beneficial to notify either other ECUs or the driver of failed attes-
tations prior to repair (Section 7.2), so that they can respond and be aware of
the full vehicle state. However, under our solution, the Adversary II may disrupt
any communication between TApp and the CAN bus. Therefore it is in general
not feasible to perform this communication before self-repair is completed.

Due to these limitations inherent to most self-attestation approaches, we may
in the future investigate a decentralized firmware attestation solution [26] which
can establish external awareness of attestation results, and is resilient to the
adversary which can shut down the TEE.

7.2 Real-time vs Delayed Rebooting

While FSAVER technically enables almost immediate ECU restoration, it may
be unsafe to do this during vehicle operation. This is because rebooting the ECU
may cause undefined behaviour while driving, as usually the vehicle is idle when
ECUs are powered on. This undefined behaviour may cause safety issues such
as crashing the vehicle or stopping it in the middle of the road. Due to these
safety concerns, Andréasson et al. [3] has suggested a comprehensive strategy:
1) always notifying the user upon malware detection, so that in certain cases,
they can stop the vehicle while repair proceeds. 2) Upon detecting malware in
non safety-critical ECUs, immediately performing repair while still informing the
driver. 3) For safety-critical ECUs, wait until the vehicle is completely stopped
before performing repair. In this case, the user would initiate repair when he/she
feels it is safe. We believe this is a reasonable approach, though as noted above,
an inherent limitation of self-attestation schemes is that they cannot notify other
ECUs of the detected malware under the Adversary II. This makes it infeasible
to reliably notify the user of malware detection. In the future, we may investigate
a solution which enables such external communication.
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8 Related Works

8.1 In-vehicle Firmware Self-Attestation

Secure Firmware Flashing. In 2008, Weimerscirch [52] developed a secure
software flashing strategy for in-vehicle ECUs. In their strategy, the bootloader
will receive a certificate, then the new firmware will be flashed. During flashing, a
hash is incrementally computed over each block and a signature provided by the
OEM is checked. Nilsson et al. [38] introduce a distinction between control and
functional systems within an ECU. The control system will manage the flashing
procedure and will check that the firmware contents were provided by a trusted
“portal”. This attestation is accomplished via computing a hash chain with an
incorporated challenge value, which is checked against a provided “verification
code”.
Secure Boot. Towards checking the firmware contents after the initial flashing,
Gui et al. [13] developed a hardware based root of trust for ECUs, which in-
cludes secure boot component. This secure boot component largely relies on the
maintenance of “golden measurements” of the trusted code. The ECU firmware
is checked against these golden measurements before booting to ensure that the
trusted code will run. Indeed, such secure boot solutions, where upon each boot
a bootloader which will check the entire ECU firmware using cryptographic sig-
natures is in widespread use by the automotive industry today [40,42].
Runtime Self-attestation. The above solutions [13, 35, 40, 42, 52] all rely on
checking a digest over the entire firmware image, and so are not efficient enough
to meet the in-vehicle real time requirements for a runtime attestation [8, 25].
However, an efficient runtime attestation solution is desired [13, 52]. In 2023,
Kaster et al. introduced sliced secure boot [25], designed for in-vehicle ECUs.
This solution uses a Hardware Security Module (HSM) to compute “re-usable fin-
gerprints” over the firmware image, after the download has been authenticated.
Using these “fingerprints”, the HSM can challenge “slices” of the firmware image
at runtime, using a Cipher Block Chaining Message Authentication Code (CBC-
MAC) for authentication. Unlike the bootloader, the HSM is always available at
runtime, allowing for runtime checking. The efficiency of their solution relies on
a similar technique as spot-checking; by checking one “slice” at a time, the ver-
ification can be made much more efficient. Compared to FSAVER, sliced secure
boot introduces the HSM as an added hardware component, while our solution
uses the TEE, an existing trusted hardware component within ECUs native CPU
(Section 2.3). Additionally, by using a publicly verifiable spot-checking RDIC
based attestation (Section 2.1), FSAVER replaces the expensive cryptographic
operations used by a CBC-MAC with simple linear combinations [46]. Further,
sliced secure boot provides no explicit ECU restoration mechanism.

8.2 In-Vehicle ECU Restoration

In cyber-physical systems such as vehicles, a quick repair mechanism is desir-
able [8, 35, 38], which the above solutions do not provide. In 2015, Mansor et
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al. [35] developed a mechanism which, in addition to verifying an OEM signa-
ture upon writing new firmware to the ECU, enabled temporarily storing the old
firmware version on a “central communication unit”. This only allows restoration
immediately after flashing and is not adaptable to a secure boot or runtime at-
testation solution. Towards providing explicit ECU restoration mechanisms in
conjunction with CAN intrusion detection [16, 18, 20, 57] mechanisms, Kwon et
al. (2018) introduced a design to reconfigure ECUs and limit their behaviour
upon detection of malware [30]. The solution was to send a CAN message to a
suspected ECU which initiates a generic “safe mode” and reboot. Additionally, all
benign ECUs would ignore certain messages sent from the ECU to cause harm.
In 2023, Dafoe et al. extended this idea by relying on the unique nature of flash
storage to coordinate a repair between the TrustZone and flash firmware [23].
Specifically, upon detection of a malicious ECU via intrusion detection, a CAN
message would be sent to the target ECU and firmware rollback would be ini-
tiated. Similar to FSAVER, this firmware rollback was enabled by altering the
garbage collection strategy within the flash memory. Different from [23], FSAVER
does not rely on CAN based intrusion detection, which can be unreliable, and
usually assumes a trusted detection ECU. FSAVER is based upon a highly effi-
cient runtime self-attestation, which is far more reliable. Additionally, [23] fails
to protect against the Adversary II and so cannot guarantee successful ECU
restoration.

9 Conclusion

In this work, we have designed FSAVER, a self-attestation and self-repair scheme
for the in-vehicle scenario which is highly efficient, adapting to the real-time
requirement of any cyber-physical system. Due to the increased efficiency, we are
able to perform a runtime attestation using the TEE as a trusted auditor. For
self-repair, we enable immediate rollback to the latest benign firmware version
by incorporating the isolated flash memory controller into our design. We have
implemented a prototype of the self-attestation and rollback mechanisms, and
have effectively demonstrated its viability.
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