
Josh Dafoe, Harsh Singh, Niusen Chen, Bo Chen
Department of Computer Science
Michigan Technological University

Enabling Real-Time Restoration of

Compromised ECU Firmware in Connected
and Autonomous Vehicles

Motivation

2

Connected and Autonomous Vehicles (CAVs)

● CAVs will help humans achieve safe, efficient, and autonomous
transportation systems

● The risk of cyber threats on CAVs is increasing

3

CAV is Vulnerable to Several Attacks
● 170 attacks reported on CAVs from 2010 to 2018 (60 in 2018)

○ Remote hack through infotainment
○ CAN access through OBD-II (remote or physical)
○ LiDAR/Radar Spoofing
○ Network denial of service

● Attacks on electronic control units (ECUs)
○ ECUs are widely deployed in CAVs

■ Fuel supply, brake system, ignition, idle speed, etc.
○ Inject malicious code into the internal firmware of ECUs

■ OBD-II
■ Over-the-air (OTA) 4

Existing Defenses are not Sufficient
● Current approaches mainly focus on detecting malicious CAN activities

○ The malicious ECU can be detected by monitoring the messages on the
CAN bus (via intrusion detection and signal analysis), but no restoration
of the firmware is performed

● In this work, we utilize local hardware associated with the steganography to
enable ECU firmware restoration in real time
○ Flash memory can guarantee that the old version of firmware is

recoverable due to the out-of-place update feature
○ TrustZone helps to defend against the attacker who can compromise

the ECU OS
○ Steganography is used to protect the communications among different

parts 5

Background

6

Control Area Network (CAN)
● CAN protocol uses two wires for communication between electronic control units

(ECU)
● Messages are broadcast to all nodes on the network
● Nodes filter messages based on identifiers associated with messages
● CAN is accessible via on board diagnostics port (OBD-II) and used extensively in

vehicles for sensors and control signals

● ECU firmware updates are often
sent over CAN

7

Flash Memory

8

● Special nature of flash memory
○ Read/Write on pages, but erase on blocks
○ Erase-before-write
○ Out-of-place update
○ Limited number of program-erase (P/E) cycles

● Flash memory is broadly used as the external storage device for low-
power embedded systems like ECUs

Special Functions Incorporated into Flash Storage Device

Garbage Collection: Blocks containing too many invalid pages will be
reclaimed by copying valid data out of them, and the reclaimed blocks
will be placed to free block pool to be reused

Wear Levelling: Distribute writes/erasures evenly across flash
memory

Bad Block Management: A flash block may turn “bad” over time and
cannot reliably store data. Bad block management typically introduces
a bad block table to keep track of bad blocks. Once a block turns bad,
it will be added to the bad block table and will no longer be used

9

How to Use Flash Memory

Flash-specific File System
(YAFFS, UBIFS)

Flash Memory

Method 2: Flash File System

File System (FAT, EXT4)

Flash Translation Layer
(FTL)

Flash Memory

Method 1: FTL

Flash Translation Layer
(FTL)

10

ARM TrustZone
● Many ARM processors, such as Cortex-A and Cortex-M CPUs used within automotive ECUs are ARM

TrustZone enabled
● Two execution environments

○ Secure execution environment (secure world)
○ Non-secure execution environment (normal world)

● Each world operates independently when using the same processor and, switching between them is
orthogonal to all other capabilities of the processor

● Secure world is isolated from normal OS, the OS-level malware cannot compromise secure world

11

Steganography

● A mechanism by which to hide some secret message inside of
normal data/communications

● The secret message is embedded obscurely into original data
or messages, such that it goes unnoticed

● Different from encryption, this is intended to conceal the fact
that a secret message is being sent at all

12

System and Adversarial Model

13

System Model
● We consider a connected vehicle with multiple ECUs communicating via the CAN protocol. The

ECU is assumed to be equipped with a NAND flash storage device (e.g., an eMMC, a microSD,
etc.) on which the ECU firmware is stored

● The flash storage device is managed by an FTL, which provides a read/write interface to the ECU
OS. The FTL is run on hardware isolated from the OS, so the computation performed by it is
assumed to be secure

● Each ECU is assumed to be equipped with an ARM processor (Cortex-A or Cortex-M) with
TrustZone enabled. The trusted world, running trusted applications (TAs) can communicate with
untrusted client applications (CAs) running in the untrusted OS

● We assume the existence of a trusted in-vehicle computer (IDet) connected to the CAN bus, which
performs intrusion detection and signal analysis to detect and localize adversarial ECUs
○ Note that IDet can communicate directly with the CA via the CAN bus

14

Attack Model

● We consider an adversary which can compromise the firmware of an
ECU by injecting malicious code into the ECU OS

● Any detection and recovery mechanisms running in the ECU OS are
averted since ECU is compromised

● The malware is detectable via intrusion detection of the the vehicle, as
it must behave maliciously in order to take control of the vehicle

15

Assumptions

● The compromised ECU is not able to compromise the trusted applications
(TAs) running in the TrustZone secure world, which is protected by the
processor at the hardware level. This is a common assumption for
TrustZone-based applications

● The compromised ECU is not able to hack into the FTL, which is isolated
by the storage hardware and only presents a limited read/write interface

● Before the ECU is compromised, its firmware (OS) is assumed to be
healthy

● The compromised ECU will not perform DoS attacks, e.g., blocking regular
communication among CAN, CA, TA, and FTL

16

Design

17

● Intrusion Detector (IDet): Running on top of trusted firmware in a
secure node, which can communicate with the victim ECU via CAN
network (trusted)

● Victim ECU
○ Client Application (CA): Running on top of the untrusted firmware

which may be compromised (untrusted)
○ Trusted Application (TA): Isolated from the CA by TrustZone

hardware (trusted)
○ FTL: Isolated from CA by storage hardware (trusted)

Four Major Components

18

Key Ideas
Idea 1: Leveraging the out-of-place update strategy of flash
memory to restore the old version of firmware

F
F F’

logical page

physical page

good firmware

bad firmwareF’

● The good firmware is temporarily preserved due to the out-of-place update
of flash storage

● The good firmware can be restored

application layer
OS layer flash translation layer

19

ECU

Key Ideas (cont.)
Idea 2: Securely communicate between IDet and FTL to enable
detection notification and recovery

● For the FTL to initialize recovery, it must be notified securely of malware detection
● We hide the notification in regular communication via steganography, and use the

TA as a decoy proxy
20

Key Ideas (cont.)
Idea 3: Enabling the restoration of the ECU firmware when the
malware is still present

● It would be hard for the vehicle user to block the ECU malware once
being detected

● Upon restoration, the FTL will block all the write requests from the
upper layer, and this blocking operation will be canceled once the
good firmware has be restored

21

Design Summary

22

Design Details
1: Cover communications via steganography

● Goal: Securely embed detection
message ꞵ within regular
communication

● 2 Functions: π, a pseudo random
permutation. ƒ, a pseudo random
function

● k is the length of , the
steganographic message, and

● ɭ is the length of a secret message ꞵ
● S is the key length

23

Design Details (cont.)
1: Cover communications via steganography

● is generated in IDet, using a key
and counter shared by IDet and TA,
and sent over CAN to CA
○ CA forwards this to TA

● TA generates using a key and
counter shared between CA and FTL
○ TA sends to CA, indicating it

should be written to FTL
● FTL decodes , starting

recovery if necessary
24

Design Details (cont.)
2: Firmware restoration

● Challenge 1: The old firmware must still be present in a recoverable
manner on the storage device
○ Use out-of-place updates
○ Save the old mappings during updates to reserved area
○ Block garbage collection on old firmware blocks

● Challenge 2: The old firmware should be restored quickly to the
correct location
○ Restore the saved mappings during recovery

25

Design Details (cont.)
3: Malware removal

● Our solution
○ Disable writes on FTL to prevent rewriting the malware
○ Reboot ECU to flush malware from memory
○ Enable writes again via notification from the restored OS

● The malware may still be running on the CPU and contained in the
ECU memory even if the ECU firmware is restored to the good
version

26

Implementation

27

Implementation (cont.)
● Raspberry Pi 3B+

○ Used as IDet and ECUs
○ 4GHz 64-bit quad-core ARM Cortex-A53 CPU, 1GB LPDDR2

SDRAM)
● LPC-H3131

○ Used as the external storage of ECU
○ ARM9 32-bit ARM926EJ-S, 180Mhz, 32MB of SDRAM, and 512MB

NAND flash
● RS485 CAN hat
● Firmware modification

○ Modified OpenNFM and ported it to LPC-H3131
28

Implementation (cont.)

29

Evaluation

30

Evaluation
● Performed timing evaluations in terms of

timing in IDet, TA, and FTL
○ After malicious activity is detected,

the good firmware can be quickly
restored

● Performed throughput evaluation with
FIO, measuring the impact on normal use
○ Sequential and random write/read

were measured
○ Average throughput difference of

5.7%

Average time in IDet, TA, and FTL

Throughput Comparison (KB/s)

31

Conclusion

● We have designed a new framework for connected and autonomous vehicles
to defend against the ECU code injection attacks, by rolling back the
compromised ECU firmware to a good prior state

● We take advantage of various existing hardware features equipped with the
ECU to securely manage and efficiently perform the recovery process

● We have implemented a prototype for the proposed framework and
demonstrated its effectiveness at performing real-time recovery in a
simulated in-vehicle testbed

32

Thanks!

33

