
Poster: A Self-auditing Protocol for Decentralized Cloud
Storage via Trusted Hardware Components

Josh Dafoe, Niusen Chen, Bo Chen
Department of Computer Science, Michigan Technological University

Abstract
❖ Ensuring integrity of the data outsourced to a decentralized cloud storage system is a critical

but challenging problem.
❖ Current decentralized cloud storage systems rely on blockchain to establish a trusted entity

which can audit the storage peers using smart contracts. This brings significant overhead as
each smart contract is run on all the miners of the blockchain.

❖ By leveraging trusted hardware components equipped with the storage peer, this work has
designed a unique self-auditing protocol which can ensure data integrity in the decentralized
cloud without relying on the blockchain and smart contracts.

Remote Data Integrity Checking (RDIC)

The Move to Decentralized Cloud

Flash Translation Layer (FTL)
❖ The FTL is a firmware layer built into solid state drives (SSD)
❖ The FTL is isolated from the OS by the storage hardware, so that even if the OS

is compromised, the FTL can remain intact. Such a hardware-level isolation can
ensure the security of the computation performed in the FTL even if the OS is
compromised.

❖ The FTL will be responsible for handling the NAND flash memory that is structured
into flash blocks, with each block being composed of flash pages.

Adversarial Model
❖ We consider a decentralized cloud storage system which consists of storage peers where

each storage peer is a computer owned by any individual or an organization who wants to
join the storage network and provide storage services to earn profits.

❖ The computer is equipped with processors (with TEE enabled), RAM, as well as SSDs as
external storage.

❖ Each storage peer is untrusted
➢ The OS of the peer may be compromised by a remote hacker, or infected by a piece of

malware which is able to gain the root privilege

Design

Acknowledgments/References

This work was supported by US National Science
Foundation under grant number 2225424-CNS,
1928349-CNS, and 2043022-DGE.
[1] Opennfm.https://code.google.com/p/opennfm/, 2011.

Smart Contract Based Auditing

❖ Auditor can issue a challenge to the server

❖ Server computes a proof based on the
challenge and the stored data

❖ Auditor verifies whether the data are correctly
stored by checking the proof

❖ An RDIC runs in the TEE. The TEE generates a challenge, requesting the associated data
from the SSD. The TEE also verifies the data integrity upon receiving it.

❖ Two additional research challenges need to be addressed in our setting considering the OS
is untrusted:

1. Ensuring that the data being challenged are really from the local SSD:
➢A master key is shared between FTL and TEE, then an ephemeral key for each

integrity checking is generated via a key derivation function (KDF) based on the
master key.

➢The FTL will encrypt the data from each page read from the SSD, using the
ephemeral key (an optimization is to only encrypt a randomly selected portion of data).

➢TEE decrypts the ciphertext using the same key. If the ciphertext cannot be decrypted
properly, the RDIC will fail.

2. Ensuring the challenged data come from the desired block locations on the disk:
➢We observe that the each data block is stored on a disk location which is mapped

deterministically to a logical address (corresponding to one or more logical page
numbers) visible to the FTL

➢We can use the corresponding logical page numbers as input to the KDF to derive the
ephemeral key

Preliminary Results
We have implemented a prototype of our design
using the open-source FTL firmware OpenNFM [1]
and Intel SGX. Further, preliminary evaluations of
our prototype during three essential phases
demonstrate the low overhead. The setup phase
implements the key sharing protocol between SGX
and FTL. During file preparation, the SGX creates
tags used for the auditing process. The auditing
process, managed by the SGX requests the
necessary data from the untrusted OS, and
evaluates the integrity and source (from FTL). Our
preliminary results are summarized in the following
table:

Key share
(one time)

Prepare file
(one time)

Audit file

FTL time (s) 7.73 0.004 0.1

SGX time (s) 1.15 0.006 0.05

Centralized cloud, having only a few physical data centers, results in data being stored
further away from users, slowing down data access. Having all resources maintained in
limited physical locations is vulnerable to large outages and failures. Thus, cloud
providers today have turned to a decentralized architecture.

Trusted Execution Environment (TEE)
❖ Support secure computation in modern computing devices through hardware to

create a secure memory area that is isolated from the normal OS
❖ Examples: Intel software-guard extensions (SGX), AMD secure encrypted

virtualization (SEV), ARM TrustZone.

Application
Untrusted part Trusted part

Create enclave

Call trusted func

Execute

Return

Privileged Software

Intel SGX

❖ Current decentralized storage solutions rely on
blockchain based smart contracts

❖ There are several limitations to this approach:
➢ The smart contracts are stored and ran on all

miners, increasing the system burden.
➢ The smart contracts are immutable, so cannot adapt

to change.

Client

Auditor

Cloud Server

1.
Aud

itin
g R

eq
ue

st

2. Challenge

3. Proof

4.
Aud

itin
g

Rep
ort

TEE app SSD

Challenge
(p2, p68, …)

Read Pages
(p2, p68, …)

Derive key
Encrypt pages

Encrypted pages (p2, p68, …)
Derive key
Decrypt pages
Generate proof

(1) is necessary so the peer
cannot profit from storing the
data in a cheaper, less reliable
store.

(2) is necessary so the peer
cannot send a different block
than requested while the correct
one is corrupted.

All Miners run/store
auditing contracts

