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Abstract. To deal with surging volume of outsourced data, cloud stor-
age providers (CSPs) today prefer to use deduplication, in which if multi-
ple copies of a file across cloud users are found, only one unique copy will
be stored. A broadly used deduplication technique is client-side dedupli-
cation, in which the client will first check with the cloud server whether
a file has been stored or not by sending a short checksum and, if the
file was stored, the client will not upload the file again, and the cloud
server simply adds the client to the owner list of the file. This can signif-
icantly save both storage and bandwidth, but introduces a new attack
vector that, if a malicious client obtains a checksum of a victim file, it
can simply claim ownership of the file. Proofs of ownership (PoWs) were
thus investigated to allow the cloud server to check whether a client re-
ally possesses the file. Traditional PoWs rely on an assumption that the
cloud server is fully trusted and has access to the original file content. In
practice, however, the cloud server is not fully trusted and, data owners
may store their encrypted data in the cloud, hindering execution of the
traditional PoWs.
In this work, we make it possible to execute PoWs over encrypted cloud
data by leveraging Intel SGX, a security feature which has been broadly
equipped in processors of today’s cloud servers. By using Intel SGX, we
can create a trusted execution environment in a cloud server, and the
critical component of the PoW verification process will be executed in
this secure environment (with confidentiality and integrity assurance).
Security analysis and experimental evaluation show that our design can
allow PoWs over encrypted data with modest additional overhead.

Keywords: Client-side Deduplication, Cloud Storage, Proofs of Own-
ership, Intel SGX

1 Introduction

Cloud outsourcing can significantly reduce cost as well as burden of data storage
and management. Therefore, more and more data owners choose to outsource
their data to cloud storage providers (CSPs), e.g., Amazon AWS [1], Microsoft



Azure [2]. Since an ever-surging amount of data is now stored in clouds, an
urgent need for the CSPs is how to host those data with reduced cost. Dedu-
plication [3] can immediately help, in which only a unique copy of data will be
stored when multiple duplicate copies across different data owners are found.
Based on where deduplication is performed, we can have server-side and client-
side deduplication. In the server-side deduplication, deduplication will happen
purely in the cloud server, transparently to the client. In the client-side dedupli-
cation, the client will collaborate with the cloud server to perform deduplication.
Specifically, the client will first check with the cloud server (i.e., by sending a
checksum of the file) and, if a file has been stored, the client will not upload it
again; instead, the client will simply claim ownership of this file. The client-side
deduplication can save both storage and bandwidth, and hence has been used
broadly by popular file hosting services including Dropbox [4], Box [5], Google
Drive [6].

The client-side deduplication, however, suffers from various attacks. For ex-
ample, a malicious user can claim ownership of a file by only possessing the
checksum rather than the actual file; or an attacker can easily create and send
some arbitrary checksums and become owners of the corresponding files. Proofs
of Ownership (PoWs) [7] were thus investigated to combat those attacks. In a
PoW protocol, the cloud server will require the client to prove the ownership of
the claimed file, so that without actually possessing the original file, the client
will not be able to pass the PoW check.

Conventional PoW protocols will work correctly if the cloud server itself has
access to the original file. This, however, may not be realistic in practice. Due
to their openness nature, the CSPs should not be fully trusted, and a lot of data
owners today will choose to encrypt their valuable data before data outsourc-
ing. For deduplication purpose, secure message-locked encryption (MLE) [8, 9]
ensures that different data owners can securely derive the same encryption key
for duplicate data possessed individually. But, the encrypted data will create a
significant obstacle for correctly executing PoWs. This is because, by possessing
an encrypted file, the server cannot verify a PoW proof, which was computed by
a potential data owner over the original file. An immediate remediation is to ask
the potential data owner to first encrypt the original file, and then compute the
PoW proof over the encrypted file [10]. This however will be problematic since
now the PoW protocol can only ensure that the client possesses an encrypted
version of the original file, rather than the original file itself3. How to adapt the
PoW protocol so that it can work correctly on encrypted cloud data is still an
open problem.

You et al. proposed DEW, a PoW protocol for outsourced multimedia data
embedded with watermarks [11]. The idea is to create some sort of “miniatures”
over the original file, and send the “miniatures” to the cloud server to assist the
PoW verification. This idea can be used in adapting PoWs for encrypted data,
but it has some limitations: First, the additional storage overhead will be O(n),

3 Note that for ownership proving, we need to ensure that the prover really “owns”
the original file.
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where n is the size of the file; Second, it neglects the fact that the cloud server
still possesses an encrypted version of the file (which may still be utilized), and
thus the resulting design is general and not optimized for our unique application
scenario.

Having observed that today’s cloud servers are broadly equipped with In-
tel Software Guard Extensions (SGX) [12], we design a new PoW protocol for
encrypted cloud data by leveraging this new hardware feature. SGX can allow
creating an isolated memory region (i.e., an enclave) with both confidential-
ity and integrity assurance at the hardware level, i.e., security of this isolated
memory region can be assured even when the operating system is compromised.
In the PoW protocol, only the PoW verification process requires accessing the
original file, and therefore, it is possible to separate this process and move it
into an SGX enclave, within which the encrypted data will be decrypted for
PoW verification but the decrypted data will not be leaked to the untrusted
cloud server. The resulting design, PoWIS, is the first secure Proof of Ownership
protocol on encrypted cloud data via Intel SGX. Our key insights are: 1) The
PoW verification process is separated and delegated to the SGX enclave; 2) The
decryption key for decryptng the encrypted cloud data and the PoW proof will
be transmitted via a secure channel established between the secure enclave and
the client, which will remain confidential to the untrusted cloud server. 3) The
secure enclave and the untrusted cloud server collaborate to validate the received
PoW proof based on the stored encrypted cloud data (which will be decrypted
in the secure enclave via the decryption key sent by the client).
Contributions. Our contributions are summarized as follows:

– To the best of our knowledge, we are the first to identify the gap of existing
PoWs over encrypted data, and the resulting design, PoWIS, is the first secure
PoW protocol designed for encrypted cloud data.

– PoWIS ensures security by combining both cryptography and secure hard-
ware equipped broadly in cloud servers.

– We implement and evaluate PoWIS in terms of security and performance.

2 Background

2.1 Deduplication and Proofs of Ownership (PoWs)

Deduplication has been broadly used in the cloud environment, focusing on
eliminating unnecessary storage space by removing duplicate data outsourced
to clouds by different data owners. Since deduplication only removes unneces-
sary duplicates across owners, it does not contradict with another known data
security feature, namely, durability [13–16], in which duplicates are created for
the same data owner to be resilient against potential future failures. For differ-
ent data owners, duplicates among them will be unknown to each other, and
hence are useless. Based on deduplication granularity, we have file-based (i.e.,
the deduplication granularity is a file) and block-based (i.e., the deduplication
granularity is a block) deduplication; while based on deduplication location, we
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have server-side (i.e., deduplication happens in the server, unknown to the client)
and client-side (i.e., the server and the client collaborate for deduplication, not
transparent to the client) deduplication. In this paper, we focus on the more ben-
eficial client-side deduplication; additionally, we mainly focus on the file-based
deduplication, which is extensible to the block-based deduplication.

The client-side deduplication faces some new attacks. One of the known at-
tacks is that, a malicious data owner can claim ownership of a file by only pos-
sessing its checksum, rather than the file itself. Proofs of Ownership (PoWs) [7]
were thus explored to mitigate such an attack. A PoW protocol gets the cloud
server and the client involved, in which the cloud server (i.e., the verifier) checks
whether or not the client (i.e., the prover) really possesses the file. Halevi et
al. [7] instantiated the PoW as: a Merkle tree is first constructed over a file, and
the resulting Merkle root will be stored by the verifier; upon receiving a claim
of ownership on a file, the verifier will issue a challenge, requiring the prover
to prove possession of the file; based on the challenge, the prover will construct
correct Merkle-tree paths, and the verifier then checks: 1) whether the leaf node
of each Merkle-tree path matches the hash value computed on each chosen file
block, and 2) whether the root computed along each Merkle-tree path is identical
to the stored root; only when the two conditions are both satisfied, the prover
can pass the PoW check and become a valid data owner. Note that, to reduce the
computation during each challenge, the verifier usually uses spot checking [17]
for large files, i.e., checking a random subset of file blocks, rather than the en-
tire file. It shows that if a certain faction of the file is corrupted, by randomly
checking a constant number (e.g., 460 [17]) of the file blocks (rather than the
entire file), the verifier is able to detect the corruption with a high probability;
in addition, the cloud server is assumed to be trusted and can have access to the
original file.

2.2 Message-Locked Encryption (MLE)

Various encryption schemes, in which the encryption key is derived from the mes-
sage being encrypted is so called Message-Locked Encryption (MLE) [8,9,18]. By
using MLE in deduplication, different clients owning identical message are able
to derive the same encryption key, and hence could obtain the same ciphertext,
such that deduplication will not be disturbed by client-side encryption.

2.3 Trusted Execution Environment and Intel SGX

Hardware-enforced trusted execution environment (TEE) can be used to iso-
late sensitive code and data from other software running on the same platform,
e.g., the operation system (OS), or the hypervisor. The TEE which has been
broadly used today includes Intel Software Guard Extensions (SGX) [12] and
ARM TrustZone [19]. SGX is equipped in an Intel processor, which has been
used by a majority of servers around the world. SGX is a set of x86-64 instruc-
tion extensions that makes it possible to create a trusted execution environment
(called enclave), which can be used to protect sensitive code and data. The Intel
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processor strictly controls access to the enclave memory so that any unauthorized
instruction outside the enclave will fail to read/ write the memory of a running
enclave. The confidentiality and integrity of cache lines of enclave are ensured by
the Intel processor with SGX enabled. The processor is the only hardware-driven
trusted computing base (TCB), which eliminates various advanced attacks. The
software TCB is the code that the client wants to run inside the enclave. The
code inside the enclave can be called from outside through a customized entry
point, which is defined as “ECALL” in SGX. The processor will save the register
context to the enclave memory, allocate a buffer from the protected memory
for data transfer, and copy data from outside to the secure buffer. The secure
buffer and the register context will be scrub before resuming execution outside
the enclave. Other components, like the network interface, will be shared by
all applications, including both SGX and non-SGX applications running on the
same server.

In cloud outsourcing, both the code and the data supposed to be executed
securely will be outsourced to the untrusted cloud. In this case, it is necessary
for the client to establish trust on the remote cloud server. In SGX, this can be
achieved via Remote Attestation (RA) [20], in which a specific enclave can prove
to the client that it is successfully launched by and running on a genuine SGX
processor. Specifically, the SGX processor will measure the enclave in terms of
its layout, memory content, and other customized information which must be
included and has been hardcoded by developers of the SGX applications. During
the enclave initialization, any interference from untrusted software, e.g., the OS,
will result in a different measurement. The measurement of the enclave and a
signed digest of it form a public verifiable trust commitment, called Quote. The
Quote will be signed by a special enclave, called Quoting Enclave (QE), and the
enclave signing is an asymmetric anonymous group signing scheme, in which the
private key used to sign the digest is derived from the platform-unique secret,
which is only accessible to the platform-unique Architectural Enclaves (AE). The
signature on the Quote can be verified through the SGX Attestation API [21].
Via the RA, the client can ensure that the enclave is running on the remote
cloud server and executions inside the enclave are trustworthy. A secure channel
can be established between the client and the enclave at the same time, which
allows the client to communicate with the enclave directly. To support the RA,
the platform being attested must support the SGX and must enable the SGX
in BIOS, but the verifier of the RA does not require SGX to be supported and
enabled.

3 System Model and Adversarial Model

System model. We consider a cloud storage system which is consists of two
entities, namely, the cloud server (S) and the data owner (O). The cloud server
is equipped with Intel processors with SGX enabled in BIOS. Using SGX, the
cloud server can be logically viewed as two components: a trusted execution
environment created by the SGX processor (i.e., enclave), and an untrusted
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environment outside the enclave (still denoted as S). S provides storage services
and enables client-side deduplication. O outsources data to S but encrypts them
before uploading. Since S deploys client-side deduplication, each time when O
wants to outsource a file, it will first check with S to find out whether the file
has been stored in S (i.e., was uploaded before by another data owner). If not,
O will upload the file, otherwise, S will perform a PoW check on O and add O
to the owner list of the file if the check can be passed.
Adversarial model. The cloud server S is honest-but-curious [22, 23]. S will
honestly store the outsourced file, correctly execute required protocols (e.g., the
PoW protocol), and timely respond to data owners as contracted by the Service
Level Agreements (SLA). However, it is curious and tries to learn sensitive in-
formation from the encrypted file. There is a malicious data owner which wants
to pass the PoW check on a file without actually possessing this file. We assume
that the cloud server will not collude with the malicious data owner; otherwise,
the cloud server can simply add the malicious data owner to owner list of the
file, and PoW becomes meaningless. This is a reasonable assumption, since col-
lusion is not an honest behavior, and additionally, the cloud server will not gain
additional advantage of learning sensitive information from the file by colluding
with a malicious data owner. In addition, we assume that the data owner which
initially uploads the file is honest. This assumption is also reasonable, since by
uploading an arbitrary file initially, the data owner will gain nothing from this
outsourcing but will lose money due to paying the storage service. The commu-
nication channel between S and O is assumed to be secure, e.g., protected by
SSL/TLS.

4 PoWIS

In this section, we present the design details of PoWIS, a Proof of Ownership
scheme on encrypted cloud data via Intel SGX for secure client-side deduplica-
tion. Note that PoWIS is instantiated for the file-based deduplication, which is
extensible to the block-based deduplication.

4.1 The Overall Design of PoWIS

A secure client-side deduplication for plaintext data works as follows: The file
F is initially uploaded by a data owner O (i.e., the first uploader) during the
Initial Upload phase. During the Client-side Deduplication phase, a client4 which
possesses the same file F will check with the cloud server whether F was stored
previously, and the cloud server will issue a PoW check and the client will be
added to the owner list of the file F if and only if it can successfully pass the PoW
check (Sec. 2.1). PoWIS enables the client-side deduplication for encrypted cloud
data, by modifying both the Initial Upload and the Client-side Deduplication
phase as follows:
4 For simplicity, we use the term “client” to refer to peers interacting with the cloud

server, including both the honest and the malicious data owner.
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Fig. 1. The workflow of PoWIS in the Client-side Deduplication phase

The Initial Upload phase. Upon uploading a file F for the first time, the data
owner O will construct a Merkle-tree over it, and encrypt it using an MLE key
(denoted as Kmle, which is derived using a secure MLE instantiation introduced
in Sec. 2.2). O will also encrypt the Merkle-tree root using Kmle, and then send
both the encrypted F and the encrypted Merkle-tree root to the cloud server.
The Client-side Deduplication phase. Before uploading a file, the client will
first check with the cloud server whether the file has been uploaded before. The
client will derive the Kmle based on the file, encrypt the file using the Kmle,
and compute a checksum over the encrypted file, and send the checksum to the
cloud server [10]. If the cloud server finds out that the checksum matches a stored
encrypted file, it will check whether the client really owns the file by running the
PoW protocol. The traditional PoW protocol designed for the plaintext data can
be directly used here but can only prove that the client possesses the encrypted
file since the cloud server only has access to the encrypted file. We adapt the
traditional PoW protocol to support encrypted cloud data by leveraging Intel
SGX, a security feature built into the processor of the cloud server (which is
honest but curious as described in Sec. 3). A complete workflow of the new PoW
protocol is as follows (Fig. 1):

1. The cloud server creates an SGX enclave.
2. The client attests and negotiates a session key (K) with the enclave.
3. The cloud server sends a PoW challenge to the client. Note that, the cloud

server can use spot checking (Sec. 2.1) if the file has more than 460 4KB file
blocks, i.e., a random subset of file blocks will be checked if the file is large;
otherwise, the server simply checks the entire file.

4. The client first derives Kmle from the possessed file F . The client then com-
putes the PoW proof based on the received challenges. Specifically, it con-
structs the Merkle-tree based on F , and for each file block being challenged,
it computes the hash value of the file block, which is a leaf in the Merkle-tree,
and extracts the path from this leaf to the Merkle-tree root (i.e., consisting
of all the hash values of “siblings” along the path). The final PoW proof
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includes: 1) a set of leaves corresponding to the file blocks being checked; 2)
the corresponding sibling-paths. Lastly, the client encrypts both the Kmle

and the PoW proof using the session key K. Note that, due to the use of
spot checking, both the computation and communication overhead will re-
main constant for large files [17]. The encrypted Kmle and PoW proof will
be sent back to the server.

5. The cloud server will rely on the enclave to check correctness of the PoW
proof. Both the encrypted Kmle and the PoW proof will be passed to the
enclave. In addition, the cloud server will send to the enclave: 1) the en-
crypted Merkle-tree root (initially uploaded by the first uploader); and 2)
the subset of encrypted file blocks which is corresponding to the subset of file
blocks being checked. The enclave will then perform the following sensitive
operations transparently to the cloud server: 1) Using the session key K, the
enclave will perform decryption, obtain Kmle and the PoW proof; 2) Using
Kmle, the enclave will decrypt the encrypted Merkle-tree root as well as the
subset of encrypted file blocks; 3) Using the Merkle-tree root and the subset
of file blocks in plaintext, the enclave can check whether the PoW proof is
correct or not and the final verification result will be returned to the cloud
server. The verification is performed as:

For each file block being challenged:
– the enclave computes the hash value of the file block and compares it

with the corresponding leaf sent back by the client;
– if it does not match, the verification fails and exits;
– if it matches, the enclave will compute a sibling-path corresponding to

this file block, and check whether the resulting root matches the Merkle-
tree root sent from the cloud server;

– if it does not match, the verification fails and exits;
– if it matches, this sibling-path is valid.

4.2 Remote Attestation and Establishing a Secure Communication
Channel

The enclave is a vital component in PoWIS that enables the PoW verification
without disclosing the original file to the untrusted cloud server. Therefore, en-
suring that the enclave is really initialized in a genuine Intel SGX processor and
the verification process of PoWIS is actually running inside the enclave, is nec-
essary for security of PoWIS. This is achieved by Remote Attestation [20] (RA)
in SGX, which allows the client to attest the enclave and to negotiate a session
key to protect communication between the client and the enclave.

To ensure the session key is not modified by a man-in-the-middle attacker
during the RA process such that the client communicates with the intended
enclave, an EC signing based on elliptic curve (satisfying the NIST P-256 stan-
dard) and an enclave signing will be used. Specifically, the EC public key will
be hardcoded in the SGX application which will be running in the cloud server
side, and the EC private key will be hardcoded in the application which will
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Fig. 2. The sequence of interactions between the client and the enclave during the RA
process

be running in the client side. The private key for the enclave signing is derived
from the unique secret embedded on each SGX processor, which is only accessi-
ble to the special Architectural Enclaves (AE), e.g., the Quoting Enclave (QE),
and the Platform Service Enclave (PSE). The public key for the enclave signing
is possessed by the Intel. The interactions between the client and the enclave
during the RA process is shown in Fig. 2, which is an elaborated SIGMA key
exchange protocol based on the discrete logarithm Diffie-Hellman key agreement
(DHKE) protocol:

– Initiate RA context: The enclave accepts a handle of a trusted session created
by PSE, and accepts the EC public key as an argument, and returns an
opaque context for the key exchange that will be invoked during RA.

– Enclave msg0−−−→ client: The enclave selects the attestation mode, one of which
is based on the Enhanced Private ID (EPID), and the other is based on the
Elliptic Curve Digital Signature Algorithm (ECDSA). The attestation mode
is the main content of msg0.

– Enclave msg1−−−→ client: The enclave generates its public session key share ga,
where g is a global generator of a secure DH group G in order n, and a is
a random big integer generated inside the enclave. The enclave retrieves the
extended Group ID (GID)5. ga and the extended GID form msg1. Note that
msg0 and msg1 can be sent together (up to system setting).

5 Currently, the Intel Attestation Service only supports the value of zero for the ex-
tended GID.
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– Client msg2−−−→ enclave: The client synchronizes RA context based on msg0
and extracts the public key share ga from msg1. Then the client generates
its public key share gb, where b is a random big integer picked by the client,
and computes the session key K = gab. Further, (ga||gb) will be processed
to a digest and signed using the client’s EC private key, where “||” denotes
concatenation. gb and the signed (ga||gb) will be included in msg2, which
will be sent back to the enclave.

– Enclave msg3−−−→ client: The enclave verifies the integrity of (ga||gb) using the
EC public key, and computes the session key K = gab. The most critical
payload of msg3 is a special cross-platform commitment, i.e., Quote, which
is generated by the SGX processor. Specifically, the statement of enclave is
strictly measured by the SGX processor during the RA, including the data
generated inside the enclave, e.g. ga, the data received during the RA, e.g., gb,
and the code running inside the enclave. The resulting measurement, called
Report, will be further processed to Quote by the QE. QE will compute a
digest of Report and sign it using the private key for enclave signing. Note
that the private key for enclave signing is derived from a platform-specific
secret, the accessibility of which is strictly controlled by the SGX processor.

– Client C1,C2−−−−→ enclave: The client validates the Quote through the online
Intel Attestation Service [21] to ensure that the intended enclave is created
and run in the cloud server, and the key shares are not modified. At this
point, the client can be convinced that the Quote is signed by a valid SGX
processor, and hence the integrity of the code running in the cloud server
side as well as the data exchanged during the RA is ensured. Therefore, the
key exchange process is trustworthy and the communication channel is well
protected. The PoW proof and Kmle will be encrypted using the session K
to C1 and C2, respectively, and then will be sent back to the enclave.

5 Analysis and Discussion

5.1 Security Analysis

In the following, we show that PoWIS is a secure proof of ownership protocol
and, the server will not be able to learn sensitive information about the original
file.
A malicious client which does not possess the original file cannot pass
the PoW check. In PoWIS, the client is required to provide both the MLE key
and the PoW proof to pass the PoW check. We first show that a malicious client
which does not possess the original file will not be able to learn it. The only
known approach for the malicious client to learn the original file in the client-
side deduplication is to perform the side-channel attacks [24]. This is infeasible
in PoWIS because: at the beginning of the client-side deduplication phase, the
client is required to send a hash value over the encrypted file, rather than the
original file; in other words, by performing the side-channel attack, the malicious
client can at most learn the encrypted file rather than the original file. Then,
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without being able to have access to the original file, a malicious client will not be
able to obtain the correct MLE key, considering a secure MLE protocol is used.
In addition, the PoW proof in PoWIS is constructed based on the traditional
PoW protocol using Merkle tree [7] and, the client is guaranteed to be unable
to pass the PoW check without having access to the original file considering the
traditional PoW protocol is secure. Note that for performance consideration,
this guarantee would be probabilistic if spot checking is used [17] during the
checking; especially, if a certain percentage of the original file is missing in the
client side (e.g., 1%), by randomly checking a certain number of file blocks (e.g.,
460), the cloud server can detect this misbehavior with a high probability (e.g.,
99%).
The cloud server cannot learn anything about the original file in PoWIS.
What the cloud server can have access to is the encrypted file and the encrypted
Merkle-tree root, which are both protected by the MLE key derived through a
secure MLE instantiation. It is infeasible for the cloud server to find out the
MLE key considering a secure MLE protocol is used. In addition, each PoW
proof is encrypted using a session key, which is established through the secure
key exchange protocol between the client and the enclave. Without having access
to the session key, the cloud server cannot gain any additional advantage of
learning the original file by accumulating the PoW proofs. Last, considering the
SGX enclave is secure6, the cloud server is not able to learn anything about the
file blocks being processed inside the enclave.

5.2 Discussion

Side channel attacks against Intel SGX. The Intel SGX has been shown
to be vulnerable to various side channel attacks since the untrusted code and
the enclave code share the same processor. These include memory access pattern
attacks [25], cache-based side channels [26, 27], branch shadowing attacks [28],
etc. Several defenses have been proposed to mitigate those attacks, e.g., checking
program execution time [29], data location randomization [30], using a commod-
ity component of the Intel processor, Transactional Synchronization Extensions
(TSX), to detect exceptions and interrupts during running an enclave [31], etc.
Accelerating SGX. Accelerating SGX is necessary for handling the ever-surging
volume of cloud data. Intel has spent efforts on improving SGX performance in
the upcoming version SGX2 [12]. The SGX can be accelerated by leveraging
GPU [32], or implementing it in a more efficient platform [33], i.e., the PCIe
ExpressFabric chips, with PCIe ExpressFabric working as a high-speed resource
sharing network.

6 Note that the focus of this work is not the security of SGX itself, as we know that
various new side-channel attacks on the SGX as well as the corresponding defenses
have been actively investigated in the literature. Here we simply use SGX as a black
box which is assumed to be secure.
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enclave creation (server side) 0.06s
generating msg0 (server side) 0.002s
generating msg1 (server side) 0.009s
generating msg2 (client side) 0.003s

processing msg2, generating msg3 (server side) 0.27s
processing msg3 (client side) 1.18−1.7s

Table 1. Time for each individual component during the RA process

6 Implementation and Evaluation

6.1 Implementation

We implemented PoWIS in C. The server was implemented on a PC with SGX
enabled (Intel Core i5-9400 2.9GHz processor, 8GB RAM, Windows 10, Intel
SGXSDK version 2.7), and the client was implemented on another PC without
SGX (Intel Core i5-6300 2.4GHz processor, 8GB RAM, Windows 10). For effi-
ciency, when the total number of file blocks exceeds a threshold (i.e., 460 [17]),
the cloud server will always challenge a constant number of file blocks (i.e.,
460 [17]); otherwise, the cloud server will check the entire file. OpenSSL [34]
has been widely used for performing cryptographic computations, but Intel has
omitted several potentially insecure operations, and only the specific SSL library
adjusted by Intel [35] and compiled by an SGX processor, called SGXSSL, can
be successfully linked and used by the SGX applications. Therefore, we used
SGXSSL (based on OpenSSL-1.1.0d) for the server, and standard OpenSSL-
1.1.1e for the client, respectively.

6.2 Performance Evaluation

We mainly evaluated the PoW process of PoWIS. We used 6 files for testing, the
sizes of which range from 128KB to 16MB and the size of each file block is 4KB.
We did not try too large file sizes, since once the file size exceeds 1.84MB (i.e.,
4KB×460), the computation turns to be constant due to the use of spot check-
ing. The PoW process of PoWIS has a few key components including the SGX
Remote Attestation, the PoW proof generation, and the PoW proof verification.
Since DEW [11] can be adapted to support PoWs over encrypted cloud data, we
therefore compared PoWIS with DEW during the PoW process.
Remote Attestation (RA). In RA, the cloud server spends time on generating
msg0 and msg1, processing msg2, and generating msg3. The client spends time
on processing msg0, msg1, and msg3 as well as generating msg2. The experimen-
tal results are shown in Table 1. We can observe that the most time-consuming
operation in the server side is generating msg3. By analyzing the source code of
the RA in SGXSDK [36], we found that, the special Quote in msg3 is generated
through a series of function calls, which perform a few expensive operations, in-
cluding the SGX processor carefully measuring the enclave, sealing the resulting

12



0.125 0.25 0.5 1 2 4 8 16
4

8

16

32

64

128

256

512

 

 

Ti
m

e 
(m

s)

File size (MB)

 DEW
 PoWIS

(a) Generating a PoW proof (client side)

0.125 0.25 0.5 1 2 4 8 16
1
2
4
8

16
32
64

128
256
512

 

 

Ti
m

e 
(m

s)

File size (MB)

 DEW
 PoWIS

(b) Verifying a PoW proof (server side)

Fig. 3. Proof generation and verification in the PoW process

valid Report, QE processing the Report by signing it with a private key, etc. The
most time-consuming operation in the client side is processing msg3, varying
between 1.18s and 1.7s. This time is a little expensive because, Quote in msg3
currently can only be validated through the online attestation service provided
by Intel, and the resulting time is highly affected by network delay, server re-
sponse delay, etc, i.e., this time is very unstable and strongly depends on where
the client is located as well as the capability of the Intel attestation service. This
should be improved as the SGX technology develops.

The PoW proof generation and verification. The time for generating the PoW
proof and verifying the PoW proof are shown in Fig. 3(a) and Fig. 3(b), respec-
tively. The experimental results were averaged over 10 trials. We can observe
that: 1) The time for generating/ verifying a PoW proof in PoWIS is approxi-
mately liner with the file size before the threshold (i.e., 1.84MB), but it remains
constant after the threshold is reached. This is because, after the threshold is
reached, the PoW check will be based on spot checking, which always checks 460
blocks, randomly selected from the entire file; 2) For a fixed file size, both the
proof generation and the proof verification of PoWIS are more efficient than the
DEW [11]. This is because, in PoWIS, the proof generation/ verification consists
of lightweight hash operations and Merkle-tree computation, but in DEW [11],
the proof generation/ verification contains expensive modular exponentiation
operations over a multiplicative cyclic group. However, this does not imply that
PoWIS is more efficient than DEW during the PoW process, since PoWIS has
extra overhead in the Remote Attestation. The major advantage of PoWIS over
DEW is that, PoWIS does not require additional metadata (or “miniatures”) to
facilitate the PoW process, but DEW does, and the size of these metadata is
O(n), when n is the number of blocks in the file.
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7 Related Work

7.1 Deduplication in Cloud Storage

Data deduplication has been used broadly in cloud storage for storage saving.
The deduplication techniques can be roughly categorized into the server-side and
the client-side deduplication, and the client-side deduplication is more advanta-
geous due to its saving in both the storage and the bandwidth.
Message-locked encryption (MLE). To enable deduplication over encrypted
data, different users should generate the same encryption key for duplicate data
possessed individually. MLE has been designed for this purpose. Convergent
Encryption (CE) [18] proposed by Douceur et al. can be used to derive the
encryption key by hashing the file content, which is vulnerable to the brute-force
attack [37]. To mitigate this attack, DupLESS [9] introduced an independent key
server. Liu et al. [8] removed the independent key server at the cost of requiring
users to synchronize username/ password in advance, which is impractical.
Proofs of ownership (PoWs). In the client-side deduplication, a PoW proto-
col [7] can be used to prevent a malicious entity from claiming ownership of a file
without really possessing it. Halevi et al. [7] proposed PoW protocols which rely
on the Merkle-tree, under the assumption that the cloud server is fully trusted
and can have access to the original file. Our work PoWIS removes this assumption
and enables a PoW protocol for encrypted cloud data, in which the cloud server
can only have access to the encrypted file but is still able to check whether the
client possesses the original file. You et al. [11] proposed a PoW protocol specif-
ically for the outsourced watermarked data, in which the untrusted cloud server
can check whether the client possesses the original file even if it can only have
access to the watermarked file.

7.2 Intel SGX in Cloud Computing

SGX [12] is an advanced security feature integrated into the Intel processors that
can ensure both confidentiality and integrity of sensitive code and data even
if the OS is compromised. SGX is particularly promising in cloud computing
since a cloud server is typically an untrusted execution environment, and SGX
has been supported in various cloud providers including Microsoft Azure [2].
Schuster et. al [38] proposed a MapReduce framework in the cloud which can
allow users to run distributed MapReduce computations in the cloud without
comprising data confidentiality as well as correctness of results by leveraging
SGX. Pereira et al. relied on SGX to ensure use of audited software in an insecure
environment [39]. Kurnikov et al. designed and implemented a TEE-based cloud
key store (CKS) [40], facilitating key management securely. They implemented
a proof of concept CKS using Intel SGX. Dang et al. [41] proposed a privacy-
preserving server-side deduplication protocol that protects the confidentiality,
the ownership as well as the equality information of the outsourced data.
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8 Conclusion

This work identifies a novel conflict in traditional proofs of ownership protocols
that the verifier (i.e., the cloud server) needs to have access to the original file,
but the file accessible to the verifier is encrypted. To resolve this conflict, we
design a novel PoW protocol for encrypted cloud data by leveraging Intel SGX
(PoWIS), a security feature presenting in most of the cloud servers’ processors.
Security analysis and experimental evaluations justify that PoWIS is a secure
PoW protocol for encrypted cloud data with a modest additional overhead.
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