
Towards Mitigating Spreading of Coronavirus via
Mobile Devices

Shashank Reddy Danda
Department of Computer Science
Michigan Technological University

Houghton, MI, USA
sdanda@mtu.edu

Bo Chen∗
Department of Computer Science

Michigan Technological University
Houghton, MI, USA

bchen@mtu.edu

Abstract—Recently, impact of coronavirus has been witnessed
by almost every country around the world. To mitigate spreading
of coronavirus, a fundamental strategy would be reducing chance
of healthy people from being exposed to it. Having observed
the fact that most viruses come from coughing/sneezing/runny
nose of infected people, in this work we propose to detect such
symptom events via mobile devices (e.g., smartphones, smart
watches, and other IoT devices) possessed by most people in
modern world and, to instantly broadcast locations where the
symptoms have been observed to other people. This would be
able to significantly reduce risk that healthy people get exposed
to the viruses. The mobile devices today are usually equipped
with various sensors including microphone, accelerometer, and
GPS, as well as network connection (4G, LTE, Wi-Fi), which
makes our proposal feasible. Further experimental evaluation
shows that coronavirus-like symptoms (coughing/sneezing/runny
nose) can be detected with an accuracy around 90%; in addition,
the dry cough (more likely happening to COVID-19 patients) and
wet cough can also be differentiated with a high accuracy.

Index Terms—COVID-19 symptoms, Mobile devices, Feature
extraction, Detection, Location

I. INTRODUCTION

To prevent coronavirus from spreading, the best strategy
would be requiring a person to remain in quarantine once
infected. This is unfortunately not realistic, because: Symp-
toms of coronavirus are difficult to be differentiated from
those of cold and flu, and most of infected people may still
wander around before they are actually confirmed through
coronavirus testing, which usually suffers from a long delay.
Another strategy would be requiring any person who has
flu/cold/coronavirus symptoms to stay at home and avoids
going to public places. This may not be effective either,
because: First, a potentially infected person may live alone,
and he/she sometimes really needs to go outside even if he/she
has symptoms, e.g., to purchase household necessities, to see
a doctor. Second, some of the infected persons may not have
obvious symptoms [2].

Social distancing could definitely help, but may not solve
all the issues. According to [1], “The new coronavirus is

This is a preprint of the paper “Towards Mitigating Spreading of Coro-
navirus via Mobile Devices”, which will appear in IEEE Internet of Things
Magazine. The copyright has been transferred to IEEE, and a link to the article
abstract in IEEE Xplore will be added when available.

Bo Chen is the corresponding author. Email: bchen@mtu.edu.

a respiratory virus which spreads primarily through droplets
generated when an infected person coughs or sneezes, or
through droplets of saliva or discharge from the nose”. What if
an infected person just coughed or sneezed in a public location,
and left. The droplets may remain in the air or viruses may
remain in the stuffs around (e.g., a self-checkout machine in
Walmart). Another person who just passes through may be
exposed to the viruses. This issue clearly cannot be solved by
social distancing.
The problem being faced. To mitigate coronavirus spread-
ing, a fundamental strategy would be reducing chance of
healthy people from being exposed to the coronavirus. Hav-
ing observed the fact that most viruses come from cough-
ing/sneezing/runny nose of the infected people, if we can
come up with a way to capture and publish each cough-
ing/sneezing/runny nose event, we should be able to sig-
nificantly reduce risk that healthy people get exposed to
the viruses. For example, a healthy person will choose to
stay away from a location/trajectory where another person
just coughed half a minute ago in a closed space like a
supermarket; a store staff will put more efforts on cleaning the
locations where coughing/sneezing/runny nose happen (while
wearing a face-mask for self-protection). However, capturing
and publishing every coughing/sneezing/runny nose event is
indeed a challenging problem in real world.
Proposed approach. Thanks to the broad use of mobile
devices, this problem turns to be solvable. Nowadays, almost
every person has a smart device (e.g., a smartphone, a smart
watch), and each smart device is usually equipped with various
sensors including microphone, accelerometer, GPS as well as
network connection (4G, LTE, WiFi). The smart device can be
utilized to 1) detect a potential coughing/sneezing/runny nose
event; and 2) publish this event as well as its GPS location
via Internet. Note that the proposed approach will be useful
only after more and more users participate the network (e.g.,
using their own mobile devices to capture their own symptoms
or symptoms happening around and distributing them to the
network). The participants will have motivation since they
will also benefit from obtaining symptoms events from other
participants to avoid trajectories/places where chance of being
exposed to coronavirus is high; in addition, each event will
not be associated with the owner of the device, protecting the



owner’s privacy.
In this paper, we focus on assessing the feasibility of

using mobile devices to detect potential symptoms including
coughing/sneezing/runny nose events (Sec. II). We extract a
few useful features from those symptoms for detection, and
our experimental results using real-world data sets show that
we can detect those symptoms with a high accuracy, i.e.,
more than 90% as shown in Sec. IV-A. In addition, having
observed COVID-19 patients more likely suffer from dry
cough rather than wet cough, we therefore also assess the
feasibility of differentiating dry and wet cough using mobile
devices (Sec. II-B). Our experimental results show that we can
differentiate the two types of cough effectively, i.e., more than
90% detection rate as shown in Sec. IV-B. We also discuss
a few technical details during implementing the detection
approaches into Android devices (Sec. III).

II. DETECTING CORONAVIRUS-LIKE SYMPTOMS

A. Detecting Cough/Sneeze/Runny Nose
The coronavirus-like symptoms like coughing, sneezing,

or runny nose will produce audio signals, and we focus on
detecting such symptoms by analyzing the audio signals. The
process for detection is described in Fig. 1. Given the audio
signal (captured from the sensor equipped with a mobile
device), we first extract a few time/frequency domain features,
and perform feature normalization using the standard scaler
(note the normalization can help reduce the time needed
for calculation in the model). Once the aforementioned pre-
processing is done, we can perform classification using the
machine learning (ML) model which has been trained using
a training data set. In the following, we elaborate both the
features and the classification models we use in the detection.
Features. We need to convert the audio signals to some

Fig. 1. The process of detecting coronavirus-like symptoms.

representation which usually consists of several features that
describe each frame of the audio signal. The common features
used in speech recognition systems are:

• Mel-frequency cepstral coefficients (MFCC): MFCC
is one of the most broadly used features for speech
classification [13]. MFCC makes learning of an audio
signal easy and the total MFC coefficients range from
0 to 39 which makes a complete power spectrum of a
signal on a Mel scale frequency. It considers the human

perception for sensitivity mostly by transforming the
frequencies to Mel Scale. We consider a total of 20 coef-
ficients to achieve a good performance. The frequencies
are converted to Mel scale using the equations mentioned
in [13].

• Variation rate: It measures the variation coefficient of
the short term energy [13] which is calculated by adding
the squared absolute values of amplitudes normalized by
the length of the frame.

• Zero crossing rate (ZCR): ZCR measures the sign
changes of the amplitude values of each frame [13]. We
count the number of zero crossings which helps to discern
no symptom sounds by setting up a threshold.

• Entropy: Probability of short-term energy for each frame
after dividing it into several sub frames is called entropy.
The entropy can be used to show variation between the
sounds with symptoms and without symptoms.

• RMS: RMS measures the energy for each frame and
mostly helps in differentiating the frames with higher and
lower energies. With the help of RMS we can separate
the audio signals because the sounds with symptoms will
be having a higher RMS [14] when compared to the other
signals.

• Spectral bandwidth: Bandwidth is mostly useful in
measuring the uniformity of the FFT spectrum [14].

• Spectral centroid: Characterization of the spectrum can
be done using the spectral centroid [14]. It measures the
centroid of the spectrum and gives the total number of
frame count present in a particular audio sample.

• Spectral flux: Changes in the spectral energy between
two successive frames is measured using the spectral flux.
It compares the power spectrum of both the frames and
shows the variation among those frames.

• Chroma features: These features venture the sound
events onto 12 bins which consists of 12 pitch classes.
Most of the harmonic and the melodic features can be
found easily by these chroma features.

Classification models. Support vector machine (SVM) and
random forests (RF) are widely used for large training data sets
which usually take less computational time when compared
to other algorithms like kNN. Especially, SVM has been
used in most of the research related to cough and other
symptoms detection [14]. We therefore perform two types of
classification based on the SVM and the RF, respectively: 1)
a binary classification in which we individually detect each
symptom (cough, sneeze, and runny nose) using SVM and
RF; and 2) a multi-class classification in which all the three
symptoms are detected together using a better model selected
based on the results of binary classification using SVM and
RF. Steps for selecting the better model in the multi-class
classification are described below:

1) We try different combinations of features, and find out
those features which can result in a better detection per-
formance in both binary and multi-class classification.

2) Detection of each symptom individually is performed

2



using the binary classification with SVM and RF, and
the model with better performance is chosen using cross
validation, which acts as the final model for the multi-
class classification.

3) A final data set is chosen with equally balanced classes
using some data sampling methods in order to avoid
class imbalance problem in the multi-class classifica-
tion [14].

B. Differentiating Dry and Wet Cough

Differentiating dry and wet cough is important since
COVID-19 patients more likely suffer from dry rather than wet
cough. In other words, if the detected event is a dry cough, the
risk of COVID-19 exposure will be much higher than that of
a wet cough, and the people who receive such an event would
be more alert. In this following, we describe features used
for dry/wet cough classification as well as the classification
models.
Features. MFCC and ZCR can be used to differentiate dry and
wet cough, because: MFC coefficients are used in representing
the short term power spectrum of a signal, and the power
spectrum shows the coefficients for each frequency which
varies in dry and wet cough signal. ZCR is used in finding
the number of zero crossings in a signal, which is usually
high for high frequency signals like wet cough signal due to
presence of mucus and, is usually low for dry cough signal.
Other features for this purpose are listed as follows:

• Formant frequencies: In general, the resonance of the
human voice tract is known as formants. Several formants
can be extracted from an audio signal but usually the first
three formants carry most of the useful information since
these acoustic sounds are mostly related to the upper
airways. The first three formant frequencies in linear
predictive coding spectrum are usually denoted as F1, F2,
F3, which can be calculated using the Burg algorithm [7].

• Log energy: Difference between segments can be shown
using the log energy which shows the variation of speech
over time. This energy is calculated using the MFB output
which is based on sub band and captures the dynamic
variations of speech signals.

• Pitch: Pitch is the fundamental frequency of the signal
that varies both in dry and wet cough due to presence
of mucus sounds in wet cough. As per the analysis,
the average fundamental frequency for the spontaneous
cough sounds ranges between 350Hz and 450Hz and, for
voluntary coughs, it ranges between 200Hz and 350Hz or
above 450Hz. Based on this range, the signal gets divided
into several bins and, after calculating the magnitude for
each bin, we obtain some frequency which is known as
pitch [15].

• Bi-spectrum score: Deep study of cough signals is
necessary to classify them correctly and represent the
content of frequency level. This is obtained using the
bispectrum score which is the third order spectrum of a
signal and preserves the Fourier phase information [15].

• Kurtosis: This is one of the measures for Non Gaussian-
ity and useful for measuring the peakedness of a signal
which differs in both dry and wet cough signal.

Classification models. To differentiate dry and wet cough,
besides SVM and RF, we also use an additional model,
Logistic Regression (LR). As a generalized linear model, the
LR model uses several predictors which are independent to
estimate the probability of a dependent variable, e.g., whether
a symptom event is a wet or a dry cough. The dependent
variable is assumed to be 1 for the wet cough and 0 for the
dry cough. Using this model, we can estimate the probability
of each given event and use a certain threshold (e.g., 0.5) to
classify this event as a dry or a wet cough. If the probability
of this event is greater than the threshold, it is classified as a
wet cough; otherwise, it is a dry cough.

III. IMPLEMENTATION ISSUES IN MOBILE DEVICES

The next question is how to implement the proposed ap-
proach using real-world mobile devices. As Android is the
most popular OS for mobile devices, we focus on Android
devices. Machine learning (ML) in mobile computing usually
occurs in two different ways: 1) ML on server side using
Pytorch or TensorFlow; and 2) ML using on-device infer-
ence [9], which performs detection locally on the mobile
device instead of outsourcing it to the remote server. In
general, the server-based inference is more suitable for huge
models requiring expensive computation; on the contrary, the
on-device inference is more effective for small size models
which is more suitable for our scenario providing low latency,
less cost and more privacy [8]. We therefore use the on-device
inference.
Capturing the audio input in Android devices. The audio
sounds can be captured using the microphone equipped with
an Android device. Media recorder API in Android is useful
for capturing the audio sounds using the microphone with the
user’s permission.
Converting and loading the model. We use TensorFlow
Lite, an open source deep learning framework for on-device
inference. The TensorFlow Lite converter is used to convert
a trained model into .tflite, which will be loaded into the
memory, i.e., the assets folder of Android. The size of the
models that we have converted and loaded ranges from 2.5MB
to 4MB, which is much less than other ImageNet models [9].
Correspondingly, the time needed to predict the results ranges
from 1s to 2s, which is pretty fast in the Android device.
Running inferences. After having loaded a model, features
extracted from an audio sound will be input to the model. For
detection, we rely on TensorFlow Lite inference, the process of
executing a TensorFlow Lite model on-device in order to make
predictions based on input data [4]. Note that an inference
must be run through a TensorFlow Lite Interpreter. With the
help of the built interpreter, input tensors are allocated with the
required shape to detect a symptom event. If the detected event
is a cough, it will be further classified as dry or wet cough.
Therefore, we need to create instances of different interpreters

3



linked to each model so that we can execute one model after
the other in the Android device.
Distributing the detected events to the network. After
detecting a potential symptom event locally, the Android
device will send the detected event along with the location
and the timestamp to the server (e.g., a server in a public
cloud provider like Amazon AWS) via Internet. Permissions
such as access coarse location and access fine location should
be given to the app for obtaining the GPS location data. A
new service should be created in the app to send a record
< event, GPS location, timestamp > to the server, which
will then broadcast this record to other participants in the
network.

IV. EXPERIMENTAL RESULTS

This section assesses the feasibility of detecting
cough/sneeze/runny nose symptoms using real world data.
We have collected audio samples for cough/sneeze/runny
nose from several sources including OSF (Open Science
Framework) and websites offering free relevant sounds,
generating our own data sets1. We were not able to collect
a lot of samples for runny nose. For each experiment, we
divided the corresponding data set into a training set (used for
training the corresponding model) and a testing set (used for
testing the effectiveness of the detection). We extracted most
of the spectral features using librosa library [3] for audio
processing in Python using Google colab (a cloud-based
Jupyter Notebook environment). Model training and testing
were performed using Scikit-learn and TensorFlow libraries
in Python. All the classification experiments were conducted
on a PC2 with Intel core i7 processor, 16GB memory and
Windows 10 OS.

A. Detecting Cough/Sneeze/Runny Nose

Binary classification. We performed the binary classification
using 1,719 cough/no symptom samples, out of which 1,000
samples were used for training and remaining 719 samples
were used for testing. Similarly, sneeze data set consists
of 1,108 samples of sneeze/no symptom, out of which 705
samples were used for training and the remaining 403 samples
were used for testing. For runny nose detection, we used 551
runny nose/no symptom samples for training, and 264 samples
for testing.
Multi-class classification (final model). With the best model
obtained after having performed the binary classification for
each symptom event, we performed the multi-class classifica-
tion, in which we used totally 1,748 samples which include
661 cough samples, 431 sneeze samples, 150 runny nose
samples, and 506 no symptoms audio samples for training.
In the multi-class classification, we reduced the samples in
cough and sneeze, to prevent the class imbalance problem
in which the model may have a low predictive accuracy for

1Our data sets can be shared with interested parties upon request to avoid
copyright issue. Please send us an email if you want to use our data sets.

2Our implementation in the actual Android devices is on-going.

the infrequent classes. After having trained the model, we
performed testing using 1,001 mixed samples.

1) Classification Results for The Binary Classification: The
features we used include MFCC, Variation rate, ZCR, Entropy,
RMS, spectral bandwidth, spectral centroid, spectral flux and
chroma. They were shown to be able to achieve a good trade-
off between the detection performance and the computational
cost in our experiments. The experimental results are shown
in Table I. We can observe that: 1) For cough detection, we
have achieved a better detection rate of 94-96% using the RF
model with the number of estimators 200. The true positive
rate (TPR) is 94% and the overall positive predictive value
(PPV) and F1 score are both 94%. 2) Similarly for sneeze
detection, the detection rate is better using the RF model which
is 92-93%. The overall TPR, PPV and the F1 score are all 92%.
3) For runny nose detection, we achieve a better detection rate
(around 95-96%) using the RF model, and the TPR, PPV, F1
score are all 95%.

TABLE I
BINARY CLASSIFICATION OF EACH SYMPTOM EVENT

Type of Model Performance metrics
Event Type Accuracy TPR PPV F1 score
Cough RF 94-96% 94% 94% 94%

SVM 87-89% 88% 87% 87%
Sneeze RF 92-93% 92% 92% 92%

SVM 80-81% 80% 80% 80%
Runny nose RF 95-96% 95% 95% 95%

SVM 90-92% 90% 90% 90%

2) Classification Results for The Multi-class Classification:
Based on the results obtained in the binary classification, we
chose the RF model as the final model for the multi-class
classification. We used the same set of features as those used
in the binary classification. The overall accuracy for the multi-
class classification is around 92-94% using the RF model,
computed from the total number of true positives (TP), true
negatives (TN), false positives (FP) and false negatives (FN)
obtained in the experiment, and the results for each individual
event are shown in Table II. We can observe that: 1) The runny
nose detection has the best TPR, PPV and F1 score among all
the events due to the least false positives and false negatives
observed in the experiment; 2) The sneeze detection has the
worst TPR, PPV and F1 score when compared to the other
events because of the most false positives and false negatives
observed in the experiment.

TABLE II
MULTI-CLASS CLASSIFICATION OF ALL THE SYMPTOM EVENTS

Type of Performance metrics
Event TPR PPV F1 score
cough 91% 93% 92%
sneeze 86% 89% 87%

runny nose 98% 98% 98%
no symptoms 97% 92% 94%

4



B. Differentiating Dry and Wet Cough

We manually labeled 492 cough samples, out of which
323 samples (214 dry and 109 wet cough samples) were
randomly picked for model training, and the remaining 169
samples (105 dry and 64 wet cough samples) were used
for testing. For each sample, filtering was done to remove
unwanted noise using some band pass filters and features were
extracted from these samples. The features included 20 MFC
coefficients, formant frequencies (F1, F2, F3), bi-spectrum
score, log energy, kurtosis, ZCR and pitch. Parameter tuning
for LR, RF and SVM models was performed using grid search
with 10-fold cross validation.

After performing parameter tuning, the experimental results
based on the three models LR, RF, and SVM are shown in
Table III. We can observe that, the classification using the
LR model can achieve the highest accuracy which is 93-
94%. The regularization parameter used here is C=1 and the
penalty is ‘l2’ (Ridge Regression). Table IV shows the results
of classifying dry/wet cough events using the LR model. We
can observe that: 1) For dry cough, all the TPR, PPV and F1
score are more than 90%. 2) For wet cough, both the TPR
and F1 score are more than 90%, but the PPV is smaller than
90% because the number of samples for wet cough are less
and the corresponding false positives are larger.

TABLE III
DRY/WET COUGH CLASSIFICATION USING DIFFERENT MODELS

Model Performance metrics
Type Accuracy TPR PPV F1 score
LR 93-94% 94% 95% 94%
RF 86-88% 86% 86% 86%

SVM 83-85% 84% 84% 84%

TABLE IV
CLASSIFYING DRY/WET COUGH EVENTS USING THE LR MODEL

Type of Performance metrics
Event TPR PPV F1 score

Dry cough 92% 99% 96%
Wet cough 98% 87% 92%

We also measured the time taken for training and testing
the data, which is quite small, i.e., around 0.007s for training
and 0.014s for testing.

V. DISCUSSION

Accuracy of locations. Accuracy of GPS locations usually
depends on where the person is located, e.g., if the person
is out and can see the open sky, the accuracy could be
around 16ft. In addition, recent advancements in both the
hardware and the standards make one-meter accuracy possible
in Android devices. This makes it feasible for having an
accurate location needed in our approach.
Broader applications of our approach. The symptoms like
cough/sneeze/runny nose are pretty common for airborne

diseases. For example, SARS (Severe Acute Respiratory Syn-
drome) is a virus transmitted through droplets that enter the air
when a patient coughs or sneezes; one of symptoms of MERS
(Middle East Respiratory Syndrome) is cough. Therefore, our
approach is not just applicable to COVID-19, but is also
applicable to any types of airborne epidemics or pandemics
in the future.
Limitations and future work. The proposed approach in this
paper has some limitations which will be further investigated
in our future work. First, the current approach needs to rely
on an assumption that all the participants are honest, e.g., they
will not fake a coughing/sneezing/runny nose event to disturb
the network. This assumption may not be true in practice
and needs to be relaxed by introducing a flaw detection [12].
Second, the current design is purely centralized, and is good
for a small-scale application (e.g., a local community, small
town/city), in which a few central servers are enough to
handle all the participants. However, a potential direction of
scaling the applications will be transforming it to a fully
distributed manner in which no central servers are required.
Third, each smart device should be also capable of assessing
the risk of virus exposure based on the events received as
well as providing guideline to the user; in addition, to avoid
overwhelming a mobile device, each event should only be
broadcasted to those participants who are currently located
near the event location. Fourth, we currently only consider
cough/sneeze/runny nose for detection. Additional symptoms
like fever may also help to improve the detection accuracy.
There is a non-invasive method for detecting the body tempera-
ture from images captured by a thermal camera; optionally, we
can measure the body temperature using temperature sensors
if equipped in a mobile device.

VI. RELATED WORK

Table V lists previous studies in this topic and provides
a comparison between them and our proposed work. The
approaches proposed in [6], [10], [11], [13] simply focus
on cough detection and do not incorporate networking/GPS
locations to further prevent diseases spreading. The approaches
in [5], [15] only focus on differentiating wet and dry cough,
but the detection accuracy is very low and, most importantly,
they do not incorporate networking and hence cannot prevent
COVID-19 spreading. The work proposed in [14] includes de-
tection of cough/sneeze/sniffle/throat clearing with the help of
smartphone app using SVM-based multi-classification. Feature
extraction is performed from the audio signals captured by the
microphone of the smartphone and some of the no symptom
signals are discerned using a threshold at the starting stage.
However, what they have proposed still cannot prevent spread-
ing of COVID-19 since event locations are not distributed
to the network; in addition, their detection accuracy is low
(i.e., 83%-88%); further more, the inference model has not
been mentioned in their research. In our proposed work, we
have mainly focused on detection of COVID-19 (or similar
diseases) symptoms, including coughing/sneezing/runny nose,
with the help of smartphone mic; we have evaluated several

5



machine learning models and selected the best among them as
the final model; we have also considered how to differentiate
dry and wet cough; in addition, we have used on-device
inference, using TensorFlow Lite for deploying our models
in Android devices and detecting events locally; finally and
most importantly, the detected symptoms events along with
the corresponding GPS locations (captured from the mobile
devices) will be distributed to the network to alert potential
victim people, preventing COVID-19 spreading.

TABLE V
A COMPARISON BETWEEN EXISTING WORK AND OUR WORK

Ref Device used Events Model Accuracy Mobile Sending
detected Inference Alerts

[6] Smartphone cough CNN 85-90% on-device No
Mic inference

[11] Smartphone cough SVM 80-81% Using No
Mic kNN 94-95% Separate

Systems
[13] Microphone cough Ensemble 90-92% No No

classifier
[10] Cough cough, CNN 93-94% cloud- No

detector cough- based
related- inference
diseases

[5] No dry/wet Fuzzy 76-77% No No
cough c-Mean

clustering
[15] No dry/wet LR 80-85% No No

cough model
[14] Smartphone cough SVM 83-88% not No

Mic sneeze mentioned
sniffle
throat-

clearing
Our Smartphone cough RF and 92-94% on-device Yes
work Mic sneeze, LR and inference

runny nose, classifiers 93-94% using
dry/wet Tensor-
cough FlowLite

VII. CONCLUSION

In this work, we propose a novel approach to mitigate
COVID-19 spreading via mobile devices broadly used by
people today. Especially, the mobile devices can automatically
detect symptoms events caused by the COVID-19 or similar
diseases nearby, and distribute those events to people in the
network, preventing them from getting exposed to potential
viruses. The symptoms we consider include coughing, sneez-
ing, and runny nose which may produce virus in the air.

We have conducted experimental evaluation based on real-
world data sets, which justifies that our approach can detect
aforementioned symptoms with a high accuracy. We also
discuss a few technical details on implementing the proposed
approach into the Android devices.

REFERENCES

[1] Covid-19 myth busters. Retrieved March 30, 2020, from https://health.
mcleancountyil.gov/723/COVID-19-Myth-Busters.

[2] Iceland lab’s testing suggests 50% of coronavirus cases have no symp-
toms. Retrieved March 30, 2020, from https://www.cnn.com/2020/04/
01/europe/iceland-testing-coronavirus-intl/index.html.

[3] librosa in github. Retrieved August 15, 2020, from https://github.com/
librosa/librosa.

[4] Tensorflow lite inference. Retrieved August 14, 2020, from https://www.
tensorflow.org/lite/guide/inference.

[5] Y. A. Amrulloh, D. A. R. Wati, F. Pratiwi, and R. Triasih. A novel
method for wet/dry cough classification in pediatric population. In 2016
IEEE Region 10 Symposium (TENSYMP), pages 125–129, May 2016.

[6] F. Barata, K. Kipfer, M. Weber, P. Tinschert, E. Fleisch, and T. Kowatsch.
Towards device-agnostic mobile cough detection with convolutional
neural networks. In 2019 IEEE International Conference on Healthcare
Informatics (ICHI), pages 1–11, June 2019.

[7] MSS Safya Bhore and MS Shah. A comparative study of formant
estimation. International Journal of Advance Research in Electronics
and Communication Engineering, 4(12):2879–2882, 2015.

[8] Xiangfeng Dai, Irena Spasic, B. Meyer, Samuel Chapman, and Frederic
Andres. Machine learning on mobile: An on-device inference app for
skin cancer detection. 06 2019.

[9] T. Guo. Cloud-based or on-device: An empirical study of mobile deep
inference. In 2018 IEEE International Conference on Cloud Engineering
(IC2E), pages 184–190, April 2018.

[10] Ali Imran, Iryna Posokhova, Haneya N. Qureshi, Usama Masood,
Sajid Riaz, Kamran Ali, Charles N. John, Muhammad Nabeel, and
Iftikhar Hussain. AI4COVID-19: AI Enabled Preliminary Diagnosis
for COVID-19 from Cough Samples via an App. arXiv e-prints, page
arXiv:2004.01275, April 2020.

[11] Jesus Monge-Alvarez, Carlos Hoyos-Barcelo, Paul Lesso, and Pablo
Casaseca-de-la Higuera. Robust detection of audio-cough events using
local hu moments. IEEE journal of biomedical and health informatics,
23(1):184—196, January 2019.

[12] S. Rezaei, H. Radmanesh, P. Alavizadeh, H. Nikoofar, and F. Lahouti.
Automatic fault detection and diagnosis in cellular networks using oper-
ations support systems data. In NOMS 2016 - 2016 IEEE/IFIP Network
Operations and Management Symposium, pages 468–473, 2016.

[13] Gowrisree Rudraraju, ShubhaDeepti Palreddy, Baswaraj Mamidgi,
Narayana Rao Sripada, Y. Padma Sai, Naveen Kumar Vodnala, and
Sai Praveen Haranath. Cough sound analysis and objective correla-
tion with spirometry and clinical diagnosis. Informatics in Medicine
Unlocked, 19:100319, 2020.

[14] Xiao Sun, Zongqing Lu, Wenjie Hu, and Guohong Cao. Symdetector:
Detecting sound-related respiratory symptoms using smartphones. In
Proceedings of the 2015 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing, UbiComp ’15, page 97–108, New
York, NY, USA, 2015. Association for Computing Machinery.

[15] V. Swarnkar, U. R. Abeyratne, Y. A. Amrulloh, and A. Chang. Au-
tomated algorithm for wet/dry cough sounds classification. In 2012
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, pages 3147–3150, 2012.

6

https://health.mcleancountyil.gov/723/COVID-19-Myth-Busters
https://health.mcleancountyil.gov/723/COVID-19-Myth-Busters
https://www.cnn.com/2020/04/01/europe/iceland-testing-coronavirus-intl/index.html
https://www.cnn.com/2020/04/01/europe/iceland-testing-coronavirus-intl/index.html
https://github.com/librosa/librosa
https://github.com/librosa/librosa
https://www.tensorflow.org/lite/guide/inference
https://www.tensorflow.org/lite/guide/inference

	Introduction
	Detecting Coronavirus-like Symptoms
	Detecting Cough/Sneeze/Runny Nose
	Differentiating Dry and Wet Cough

	Implementation Issues in Mobile Devices
	Experimental Results
	Detecting Cough/Sneeze/Runny Nose
	Classification Results for The Binary Classification
	Classification Results for The Multi-class Classification

	Differentiating Dry and Wet Cough

	Discussion
	Related Work
	conclusion
	References

