
MimosaFTL: Adding Secure and Practical Ransomware

Defense Strategy to Flash Translation Layer∗

Peiying Wang†‡§

wangpeiying@iie.ac.cn
Shijie Jia†‡

jiashijie@is.ac.cn
Bo Chen¶

bchen@mtu.edu

Luning Xia†‡§

halk@is.ac.cn
Peng Liu‖

pliu@ist.psu.edu

Abstract

Ransomware attacks have become prevalent nowadays due to sudden flourish of cryptocur-
rencies. Most existing defense strategies for ransomware, however, are vulnerable to privileged
ransomware who can compromise the operating system and hence any backup data stored
locally. The out-of-place-update and the isolation nature of flash memory storage, for the
first time, makes it possible to design a defense strategy which is secure against the privileged
ransomware.

In this work, we propose MimosaFTL, a secure and practical ransomware defense strategy
for mobile computing devices equipped with flash memory as external storage. MimosaFTL
is secure against the privileged malware by taking advantage of unique characteristics of flash
storage. In addition, it is more practical (compared to prior work) for real-world deployments
by: 1) incorporating a fine-grained detection scheme which can detect presence of ransomware
accurately; and 2) allowing the victim to efficiently restore the infected external storage to the
exact point when the malware starts to perform corruption. Experimental evaluation shows
that, MimosaFTL can mitigate ransomware attacks effectively with a small negative impact
on both I/O performance and lifetime of flash storage.

1 Introduction

In recent years, a special type of malware named ransomware has become very popular among cy-
bercriminals. According to a report by Symantec [39], the number of ransomware attacks increased
over 36% in 2017, and more than 4,000 ransomware attacks occur daily [42]. The latest notable
ransomware instance, WannaCry [26, 40], has spread across 150 countries and infected more than
250,000 machines in a short period.

∗A technical report of Computer Science Department, Michigan Technological University. A preliminary version
of the paper appears in ACM CODASPY ’19.
†Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
‡Data Assurance and Communication Security Research Center, Chinese Academy of Sciences, Beijing, China
§School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
¶Department of Computer Science, Michigan Technological University, Houghton, USA
‖College of Information Sciences and Technology, The Pennsylvania State University, University Park, USA

1

Different from regular malware, ransomware extorts ransom money from victims by either lock-
ing the victim systems (i.e., locker ransomware) or encrypting the data (i.e., crypto-ransomware).
Locker ransomware can be easily defended since data are still there and we can simply unplug stor-
age medium from the infected system and plug it to a clean system to copy out the data. On the
contrary, crypto-ransomware is more difficult to be defended since the data have been encrypted
by strong encryption with secret key only known to the ransomware attacker. Therefore, the paper
focuses on defending against crypto-ransomware.

In the literature, many approaches have been proposed to defend crypto-ransomware. They
can be roughly categorized into two families: 1) ransomware detection; 2) data recovery from
ransomware attacks. The idea of ransomware detection is to detect ransomware and block it as
fast as possible before it can cause significant damage to the valuable user data. The detection
usually relies on monitoring file system activities [27, 11, 20, 21, 34] or analyzing cryptographic
operations [21, 11, 23]. A pure detection-based solution is unfortunately not sufficient due to
the following reasons: First, regardless how fast the detection can be, the ransomware still runs
before being blocked and encrypts some data. Second, if the ransomware can compromise the
operating system (OS) and obtain root privilege (i.e., privileged ransomware), it can simply disable
the detection capability. The other category of ransomware defense relies on backing up valuable
data, and restoring them after ransomware attacks. The data can be backed up in either local
storage [11, 38] or third-party cloud [45]. However, those approaches are all problematic. Backing
up data in the third-party cloud results in extra storage and communication cost which may not
be acceptable by users [38]. Backing up data locally can eliminate the need of third-party cloud.
However, the backups are vulnerable to privileged ransomware which can compromise the OS and
obtain root privilege.

Mobile devices like smart phones and tablets have been used extensively nowadays. According to
statista [37], there are approximately 4.92 billion mobile devices in 2018. Unlike desktop computers,
mobile computing devices usually use flash memory as external storage media (e.g., eMMC cards,
MicroSD cards and SSD drives). Compared to traditional mechanical drivers broadly used in
desktop computers, flash memory has significantly different characteristics: First, flash memory
cannot be over-written before an erase operation is performed, which can only be performed on
the basis of a large block (usually a few hundred KBs). However, the write operation is usually
performed on the basis of a small page (usually a few KBs). Therefore, directly over-writing a page
requires first erasing the entire encompassing block which further requires backing up valid data
stored in other pages of this block, causing significant write amplification. Second, flash memory is
vulnerable to wear. In other words, frequently writing/erasing the same flash block will eventually
deteriorate the integrity of the storage. To accommodate the special nature of flash memory, an
out-of-place-update strategy is usually used in flash storage, in which the newly updated data will
be written to a new empty page, rather than the page being occupied by the old data.
Flash memory’s special nature makes it possible to design a defense strategy secure
against privileged ransomware. Mobile computing devices, which are equipped with flash
media as external storage, suffer significantly from ransomware attacks recently [4]. Due to the
out-of-place-update feature of flash media, the user data being over-written by ransomware1 will be
temporarily preserved in flash memory, which can be utilized later for data recovery. Additionally,
the flash memory is usually used in the form of an isolated device being attached to a host system,
with independent processor, memory, and software component (i.e., flash translation layer). This

1Deletion of user data can be viewed as a special over-write operation, being achieved by over-writing the target
data with garbage information.

2

prevents the ransomware from having direct access to the raw flash using the limited read/write
interface being offered, even if the ransomware can compromise the entire host OS. In other words,
the ransomware will not be able to corrupt those old data being preserved in flash memory. Taking
advantage of the aforementioned properties, it is possible to design more secure strategies specifically
for mobile devices to enable data recovery from ransomware attacks.
Limitations of existing defense strategies utilizing flash properties. FlashGuard [15] and
SSD-Insider [5] were designed to allow data recovery from ransomware by utilizing special nature
of flash memory. They, however, both suffer from significant limitations.

The basic idea of FlashGuard is: Having observed that any data being encrypted by ransomware
need to be read first and then deleted, it modifies garbage collection strategy in flash translation
layer (FTL) such that the invalid data having been read will not be reclaimed. In this way, it
ensures that, for those data encrypted by ransomware, their plaintexts are always preserved in flash
memory and used for data recovery. Their design, however, is not practical: First, FlashGuard
does not employ any detection algorithm or IDS, and hence does not have any knowledge on when
ransomware comes. Therefore, it needs to preserve all the historical versions of the “possibly”
attacked data for a long period (e.g., preserve the data which have been read for 20 days [15]) to
maximize probability of successful recovery. This unfortunately may be overkill and impractical
for mobile devices which usually have limited storage space. Second, FlashGuard does not provide
a concrete recovery component which can take care of data recovery transparently to end users.
Therefore, the users need to manually recover data encrypted by ransomware. Specifically, the
user needs to unplug the flash storage device, plug it into another clean and isolated computing
device [15], manually identify the corrupted data and metadata, and recover them using data
preserved by FlashGuard. This is very impractical considering that the users usually do not have
necessary computer skills.

SSD-Insider [5] tries to improve FlashGuard by introducing a ransomware detection and a data
recovery component. However, it also suffers from a few significant issues. First, their ransomware
detection mechanism is not effective. This is because, they detect ransomware by collecting “run-
length” of overwritten blocks within a small fixed time window (e.g., 10 seconds). This relies on their
observation that ransomware “conducts overwriting immediately after reading and encrypting the
victim’s files” [5]. This observation, however, is not necessarily true according to our independent
study (Sec. 3). Specifically, we observed a special type of ransomware (Sec. 3), which will not
overwrite the original LBAs with random data until attacking a large number of files. In other
words, the overwriting pattern of this type of ransomware is difficult to be observed during this
small fixed time window. In addition, CPU/IO-intensive applications may slow down activities of
ransomware, making it difficult to observe the overwrite pattern of ransomware in this small fixed
time window as well. Second, their recovery component is coarsely designed and can only recover
data before 10 seconds. In other words, they strongly rely on an implied assumption that the
ransomware starts to corrupt data and will be caught within 10 seconds. This assumption usually
cannot hold in practice, since real-world ransomware does not necessarily perform attacks within
10 seconds (Sec. 3). In addition, the ransomware may actively play against the victim, after they
know the design of SSD-Insider. A key challenge they cannot resolve is to allow the victim to
locate and restore the exact point when the ransomware starts to corrupt external storage. Our
design can successfully tackle this challenge. Third, they implemented their solution into an open-
channel SSD platform, which actually runs on the block device layer [6] and is accessible to the
ransomware. Such an implementation unfortunately contradicts the overall design rationale, since
security of ransomware defense strategies for flash storage [15] strongly relies on the close nature of

3

flash memory (which prevents the ransomware from corrupting data preserved in flash memory).
In this work, we aim to eliminate the aforementioned limitations and design a secure yet more

practical (compared to FlashGuard and SSD-Insider) ransomware defense strategy specifically for
mobile devices equipped with flash storage. The resulting design, MimosaFTL, is secure against
privileged ransomware by taking advantage of the special nature of flash storage. In addition, it
incorporates a detection component which monitors access behaviors caused by the ransomware in
the FTL and, once the ransomware is detected, an efficient data recovery process will be invoked to
restore the infected external storage to a good previous state. Our design relies on two key insights:

First, we introduce a fine-grained detection scheme which can detect presence of ransomware
accurately with low overhead. It is advantageous to have a detection component, because: if no
malware is detected, we can remove all the preserved old data to release storage space. Unlike
SSD-Insider which simply relies on counting the number of overwrites for detection, we rely on
more fine-grained characteristics, including I/O access type, I/O location as well as I/O length,
which could result in a more accurate detection. In addition, our detection is less expensive than
SSD-Insider, since we introduce a one-time preprocessing step which uses K-means clustering to
distill a few access patterns in the beginning, and during detection, the observed behavior can
be compared to the known patterns efficiently. Second, we allow efficiently restoring the infected
external storage to the exact point when the ransomware starts to perform corruption. Thanks to
the out-of-place-update and the isolation nature of flash storage, by simply manipulating garbage
collection, old data can be preserved and the only concern remaining is the metadata. To efficiently
restore the metadata to the exact point before ransomware corrupts user data (we call this point
“corruption point”), MimosaFTL does the following (Sec. 4.4 and 4.5): 1) It backs up the latest
metadata when the detection does not detect ransomware (we call this point “latest good point”);
2) Each change of the metadata from the latest good point is kept in the flash memory OOB area;
3) The metadata in the corruption point is efficiently reconstructed by applying a binary search
between the latest good point and the detection point (i.e., when the ransomware is detected),
together with a small number of user involvements.
Contributions. Our contributions are summarized as follows:

• We have collected more than five hundred real-world ransomware samples, and analyze their
access behaviors in the FTL. By applying K-mean clustering, we have successfully identified a
few unique access patterns of ransomware on the flash memory.

• We design a fine-grained detection scheme in the FTL, which can effectively detect presence
of ransomware by monitoring access behaviors on the flash memory caused by ransomware. In
addition, we design a scheme which can efficiently recover external storage to the exact point
when ransomware starts to corrupt data.

• We implement a prototype of MimosaFTL using real-world flash firmware, which was ported to an
electronic development board. Experimental evaluation shows that MimosaFTL can effectively
mitigate ransomware attacks with a small negative impact on both I/O performance and lifetime
of flash devices.

4

2 Background

2.1 Ransomware

Ransomware is a special form of malware that restricts access to a victim computer in order to extort
the victim for financial gain [24]. Traditional malware typically aims to collect sensitive information
stealthily without raising suspicion. On the contrary, ransomware will notify the victim, after having
infected his/her valuable files.

Ransomware can be classified into locker ransomware and crypto-ransomware based on whether
cryptographic algorithms are used to restrict data from victims. Locker ransomware is designed to
restrict interaction with the system by weak techniques, such as simply locking the screen [44] or
modifying the master boot record (MBR) and/or partition table [2], which can be easily restored
without paying the ransom. Crypto-ransomware uses cryptographic algorithms to encrypt the
victim’s valuable files (e.g., documents and images) silently. Once the encryption is completed, the
victim will be asked for a ransom to obtain the decryption keys needed for recovering plaintext files.

Crypto-ransomware can be divided into three categories based on types of encryption schemes
being used [29]: symmetric key crypto-ransomware, asymmetric key crypto-ransomware, and hy-
brid key crypto-ransomware. Symmetric key crypto-ransomware simply uses symmetric encryption
to encrypt files. The symmetric key may be reverse engineered or even brute forced [3]. Asym-
metric key crypto-ransomware uses asymmetric encryption for file encryption. A drawback is that,
encrypting large files using asymmetric encryption is usually time consuming. Hybrid key crypto-
ransomware mitigates the drawback of asymmetric key crypto-ransomware, by using symmetric
encryption to encrypt files, and using asymmetric encryption to encrypt the corresponding encryp-
tion key. Hybrid key crypto-ransomware is the mainstream of ransomware [23].

2.2 NAND Flash Memory

NAND Flash stores information in an array of memory cells, which are grouped into blocks of a
few hundred Kilobytes. Each block is further divided into a certain number (e.g., 32, 64, or 128)
of pages. Typical page size is 512 bytes, 2KB, and 4KB [8]. A page usually contains a small spare
out-of-band (OOB) area which is used for storing various metadata (e.g., error correction code) [22].

A logical page A Physical page

Write logical
page M with a

(a) In-place update in HDDs (b) Out-of-place update in NAND flash-based block device

a b

a
ba

An invalid page

M

Overwrite logical

page M with b

M M

Write logical
page M with a

Overwrite logical

page M with b

M

Figure 1: Overwrite operation in HDDs and NAND flash-based block devices.

5

File System
I/O with LBA

NAND Flash Memory

I/O with PBA

Application

Address
Translation

Garbage
Collection

Wear
Leveling

Bad Block
Management

FTL

Flash-based block device

Figure 2: The architecture of a flash-based block device.

Different from traditional mechanical hard drives, NAND flash has a few unique characteristics,
as described in the following. First, NAND flash has an erase-before-write design, i.e., overwrit-
ing a flash cell is not feasible before an erasure is performed over it. Second, the unit for read-
ing/programming flash is usually a page, but the unit for erasing flash is usually a block (i.e., block
erasure). Therefore, overwriting a page requires first erasing the entire encompassing block. This
may cause significant write amplification, since data stored in the other pages of this block needs
to be backed up before block erasure and written back after block erasure. Third, each block can
be programmed/erased for a limited number of times. Therefore, a block will be worn out if the
number of programs/erasures performed over it exceeds a certain threshold. To accommodate this
special nature of flash memory, an out-of-place update rather than an in-place update strategy, is
used in flash storage (Figure 1), in which when a page is overwritten, the new data will be simply
written to a new empty page, while the old data will be temporarily preserved in the old page
before garbage collection is invoked.

To be compatible with traditional block-based file systems (e.g., NTFS, EXT4, FAT32), a flash
device is usually used as a block device by exposing a block-based access interface (i.e., a flash-based
block device like SSD drive, USB stick, eMMC card, and SD card). The architecture of a flash-
based storage system is shown in Figure 2, in which we can observe that to transparently handle
the special nature of flash memory, a piece of special firmware, Flash Translation Layer (FTL),
is introduced between the file system and the raw flash. The FTL usually implements four key
functions: address translation, garbage collection, wear leveling, and bad block management.
Address translation. Flash-based block devices usually implement an out-of-place-update strat-
egy, and therefore location of valid data may change over time. Thus, the FTL needs to keep track
of mappings between addresses from upper layer and actual physical addresses in flash memory.
Utilizing these mappings, the FTL can translate addresses from the upper layer (we call them Log-
ical Block Addresses, or LBAs) to physical flash memory addresses (we call them Physical Block
Addresses, or PBAs), providing a unique block-based access interface.

6

Garbage collection. Garbage collection is necessary to periodically reclaim those pages which
store invalid stale data (we call these pages invalid pages). The garbage collection runs as follows:
1) It selects those blocks which satisfy a certain reclaim threshold as victim blocks. For example,
the victim blocks can be those with the largest number of invalid pages. 2) It copies valid data
stored in the victim blocks to free blocks, and meanwhile, updates the corresponding mappings; 3)
It finally erases the victim blocks.
Wear leveling. Each flash block has a limited number of program/erase (P/E) cycles. Therefore,
to prolong lifetime of flash memory, programmings/erasures need to be distributed evenly across
the entire flash memory. This can be achieved by wear leveling.
Bad block management. Due to their limited P/E cycles, flash blocks will eventually turn “bad”
and cannot be used to reliably store data any more. Bad block management is thus required to
carefully manage those bad blocks.

2.3 K-means Clustering

K -means clustering [19] is a widely used unsupervised learning algorithm which is used for unlabeled
data. It can be viewed as an optimization problem: given a set of n data points (each is from a
d-dimension space), it places k centroids that can minimize the overall squared distance between
each data point and its closest centroid.

Silhouette coefficient [33] is usually used to evaluate effectiveness of clustering, which is defined
as:

s(i) = b(i)−a(i)
max{a(i),b(i)}

where, for each data point i in the dataset, a(i) is the average distance between i and all the other
data points within the same cluster; b(i) is the smallest average distance of i to all data points in any
other cluster (i.e., i is not a member of this cluster); the average s(i) over all data points of a cluster
measures how tightly grouped all the data points in the cluster. In general, the silhouette coefficient
ranges from −1 to +1, and a higher value usually indicates a more ideal clustering model.

3 Studying Access Activities on Flash Memory Caused by
Real-world Ransomware

Ransomware behaves differently from benign software and other types of malware. For example,
the ransomware usually needs to read the victim data, encrypt them, and 1) over-write the victim
data with the ciphertext; or 2) write back the ciphertext to a different location and delete the victim
data. Our intuition is, the special behaviors of ransomware in the upper layers (e.g, file system)
will eventually cause repeated special access behaviors (i.e., access patterns) on the underlying flash
memory. Since all the access requests issued by the file system will be handled by the underlying
FTL (Sec. 2.2), by hacking into the real-world FTL, we may be able to detect abnormal access
behaviors on the flash memory caused by ransomware, which is running in the upper layers.

In the FTL, there is no semantic information from the upper layers. To monitor the access
activities of ransomware on flash memory, we can only utilize limited information as follows: access
type (i.e., read/write), destination LBA, and size of each I/O request. Note that, the delete
operation is usually implemented by writing the target location with NULL data.

7

Collecting access activities of ransomware on flash memory. To study specific access
behaviors on flash memory caused by ransomware, we randomly selected and ran 518 prevalent
crypto-ransomware samples collected from VirusTotal [1] and Github [13], including 11 different
ransomware families. Column 1 and 2 in Table 1 summarize information about the samples being
used. To collect access activities of ransomware on flash memory, we followed a few steps: 1) We
ported an open-source FTL framework, OpenNFM [10], to an electronic development board LPC-
H3131 [25]. 2) We attached LPC-H3131 as a USB mass storage device of a computer running a
virtual machine with Windows 7 and FAT32. 3) We ran each ransomware sample in the virtual
machine and used Tera Term Pro [36], a serial debugging tool, to output access activities. After
each run, the virtual machine was restored to a clean state.
Extracting access patterns on flash memory caused by ransomware. To distill patterns of
access behaviors on flash memory caused by ransomware, we utilize K -means clustering algorithm
(Sec. 2.3), a widely used unsupervised learning algorithm. Compared to supervised learning [5],
the unsupervised learning algorithm is more suitable for ransomware scenarios, because: the ran-
somware samples are created by diversified hackers or organizations, resulting in various ransomware
categories with different behavior patterns, and such prior knowledge is unknown. We consider a
3 -dimensional space. These 3 dimensions include the access type (i.e., read or write), the starting
destination LBA, and the size of each I/O request. In other words, each data point for K -means is
a 3-dimension vector (access type, starting destination LBA, size of I/O request).

Training. We used half ransomware samples from each ransomware family (Table 1) for training
purpose. For each sample, we collected 150 successive access. Note that each access contains the
access type (i.e., read or write), the starting destination LBA, and the size of I/O request, and is
viewed as a data point (i.e., a 3-dimension vector) for K -means clustering. During training, we
changed value of k incrementally from 2 to 8, and calculated the silhouette coefficient for each k
value. We found that K -means clustering can obtain the best clustering result2 when k=4. After
the training, we obtain the following results for our K -means clustering model: 1) Centroids of 4
clusters, which can be used to label new data; 2) Labels for the training data (each data point is
assigned to a single cluster).

Extracting access patterns. After having fixed the K -means clustering model (i.e., k=4), we ex-
tracted access patterns using remaining ransomware samples from each ransomware family. For each
ransomware sample, we selected 150 successive access. Each access corresponds to a 3-dimension
data point, which was used as an input to the fixed K -means clustering model.

Column 3 to 6 in Table 1 show the classification results corresponding to the four clusters A, B,
C, and D. The corresponding four types of access patters are summarized as follows (see Figure 3):

• Type A: the ransomware reads from successive LBAs, and writes back ciphertext (after encryp-
tion) to these LBAs with the same starting LBA. The size of the ciphertext being written back
is almost3 the same as the size of the content being read.

• Type B: the ransomware reads from successive LBAs, and writes back ciphertext to these LBAs
with the same starting LBA. The size of the ciphertext being written back is smaller than the
size of the content being read. This is because, the victim file may be compressed before being
encrypted or only a portion of a file is encrypted (e.g., CryptoLocker).

2During training of K -means clustering, we found the silhouette coefficient is both high when k is either 2 or 4.
However, k = 2 means there are only 2 clusters, which may easily lead to a situation that mistakenly categorizes
normal software behaviors as ransomware behaviors, causing higher false positives. Therefore, we choose k as 4.

3Some ransomware samples like Ransom32 append RSA or AES key information at the end of each ciphertext,
and hence the size of the data being written back is slightly increased.

8

Table 1: Real-world ransomware samples and K -means clustering results.
Family #Samples A B C D Time

TeslaCrypt 26(5.02%) 145 5 0 0 12
Locky 131(25.29%) 137 1 9 3 12
Cerber 23(4.44%) 143 4 3 0 2

Ransom32 28(5.40%) 131 8 11 0 8
CTB-locker 71(13.71%) 2 141 5 2 2

CryptoLocker 49(9.46%) 1 146 2 1 2
HydraCrypt 38(7.34%) 0 1 121 28 12

Samas 30(5.79%) 0 0 31 119 19
Bart 6(1.16%) 2 4 10 134 2

CryptoWall 102(19.69%) 1 7 15 127 13
Maktub 14(2.70%) 0 3 15 132 4
Total 518 - - - - -

• Type C: the ransomware reads from successive LBAs, and writes the ciphertext to new free
LBAs. The size of the ciphertext being written is almost the same as the size of the content
being read.

• Type D: the ransomware reads from successive LBAs, and writes the ciphertext to new free
LBAs. The size of the content being read/written exhibits certain periodic characteristics, e.g.,
the length of each successive read is always 32 or 64 (in LBAs), and the length of each successive
write is always 8 (in LBAs). Potential reasons for this type of pattern are: To attack victim
files quickly, ransomware usually uses symmetric encryption to encrypt files [23]. As plaintext
input and ciphertext output of symmetric encryption are commonly divided into groups with
fixed size (e.g., 16 bytes in AES), both the successive read/write will exhibit certain periodic
characteristics in length. For this type of ransomware, we also observed that it will not overwrite
the original LBAs with random data until having attacked a large number of data (i.e., the delay
of overwriting the original LBAs with randomness is more than 10 seconds [5]).

For each ransomware family, we also measured their average time of attacking the entire external
storage on LPC-H3131 (see column 7 of Table 1, in minutes). The time varies from 2 to 19 minutes,
which indicates that different ransomware variants may have a completely different attack time
span. Therefore, detecting ransomware by observing overwrites in a small fixed time window (e.g.,
10 seconds [5]) or simply restoring the victim system to a fixed historical check point (e.g., before
10 seconds [5]) may not be proper.

4 MimosaFTL Design

4.1 Model and Assumptions

System model. We consider mobile computing devices which are equipped with flash-based block
devices (e.g., eMMC cards, SD cards, MiniSD cards, SSD drives) as external storage. This is the
most common form of mobile computing devices nowadays. It can be also applied to desktop/laptop
systems which use flash-based block devices (e.g., SSD drives).

9

Figure 3: Four types of ransomware access patterns observed in FTL. R:read, W:write, Length: the
LBA length of a successive read or write operation.

Threat model. We consider crypto-ransomware which encrypts the victim’s data and asks for
ransom money. We do not consider locker-ransomware which simply locks the victim system,
since it can be easily defended by copying out the data from the victim system. In addition, the
ransomware can compromise the entire host OS. However, it is not able to compromise the FTL.
This is because, a flash-based block device usually only exposes a block access interface to the OS,
with independent processor, memory, firmware (i.e., FTL), all of which are inside the flash device
(Sec. 2.2) and invisible to the OS. Also, once the ransomware has successfully propagated to the
victim system, it will run and encrypt the victim data to gain profit.
Assumptions. We assume ransomware will not imitate regular non-malicious software when per-
forming encryption (e.g, slowly encrypt victim data in a long period). Such highly intelligent
ransomware is rarely found in practice, since most ransomware tends to encrypt victims’ data and
ask for ransom in a short period. We also assume the mobile device always has spare storage space
in flash memory.

4.2 Design Overview of MimosaFTL

MimosaFTL aims to design a practical ransomware defense strategy, which is secure against priv-
ileged ransomware. To achieve this goal, MimosaFTL adds three components to flash translation
layer (FTL): ransomware detection, data backup and data recovery. The ransomware detec-
tion component is running in the FTL and monitoring access behaviours on flash memory, aiming
to detect presence of ransomware in a timely manner. Since the privileged ransomware is not
able to compromise the FTL (Sec. 4.1), the detection component can always remain secure. The
data backup component backs up essential data for later recovery of external storage hacked by
ransomware. The external storage includes both data and metadata. By utilizing the out-of-place-
update feature of the flash-based block device, MimosaFTL simply modifies the garbage collection
to preserve the data corrupted by the ransomware. In addition, MimosaFTL periodically keeps the
latest version of the “good” metadata after relying on the detection component to identify a good

10

state. The data recovery component restores the external storage corrupted by ransomware once
ransomware has been detected. Both the data and the metadata will be recovered.

4.3 Ransomware Detection

Based on the access patterns extracted in Sec. 3, our detection scheme can simply monitor access
behaviors on the flash memory, and compare them with the known ransomware patterns. We
introduce a new data structure, namely, recently requested access (RRA) list, to keep track of the
recent I/O requests from the block device. When an access request is received by the FTL, its
abstract information will be inserted as an entry into the RRA list. Each entry of the list consists
of three components: access type (i.e., read or write), starting destination LBA, and length of this
access in LBAs (e.g., how many LBAs are read/written by this access). Note that the delete (e.g.,
trim [41]) operation can be treated as an overwrite. The user can determine the length of the RRA
list. A larger length implies a less frequent detection process with less incurred overhead, while
a smaller length implies a more frequent detection process with more overhead. When the list is
filled, the detection process will be triggered. After the detection process, MimosaFTL will clear
the RRA list and prepare for the next detection process.

We elaborate details of the detection process in Algorithm 1, in which access requests in the
RRA list are analyzed to detect presence of ransomware as follows:

1) For ransomware which writes ciphertext to the original LBAs of the victim files (i.e., type
A or B): we first check the RRA list, and find out whether there are a read and a write, that
start with the same LBA address. If we can find such a pair of read and write, we compare their
corresponding length. If the difference is smaller than a threshold δ, we find a type-A ransomware
pattern. Otherwise, we find a type B ransomware pattern. We accumulate the number of type A
patterns, and compute a ratio between the number of type A patterns and the total number of
access requests in the RRA. If the ratio is larger than a threshold (i.e., Threshold 1, which will be
discussed in Sec. 6), we detect a type A ransomware attack. Similarly, we accumulate the number
of type B patterns, and find out whether there is a type B ransomware attack.

2) For ransomware which writes ciphertext of the victim files to new free LBAs (i.e., type C or
D): we first compare the length of a read request with the accumulating length of continuous write
requests before the next read request is invoked. If the two lengths are close to each other (e.g., less
than the threshold δ), we find a type C ransomware pattern. We accumulate the number of type
C patterns, and compute a ratio between the number of type C patterns and the total number of
access requests in the RRA. If the ratio is larger than Threshold 1, we detect a type C ransomware
attack.

For type D ransomware, we analyze the size of each successive read/write. We identify top-three
sizes which appear most frequently, and summarize their total number of appearances. We compute
a ratio between this sum and the total number of access requests in the RRA, and check whether or
not the ratio exceeds another threshold, Threshold 2. We call this “condition 1”. In addition, we
need to distinguish type D ransomware from benign applications like file encryption and compression
applications, as they may generate similar I/O access patterns. The main difference is that benign
applications are not designed to deny access to the original files, and usually the original files will
not be deleted or overwritten, but ransomware will delete/overwrite the original files, and hence
the mappings of the destination LBAs of the continuous read will turn invalid gradually. Therefore,
we further check whether or not the mappings of the destination LBAs of the continuous read turn
invalid gradually. we call this “condition 2”. Only if both the condition 1 and 2 are true, we

11

Algorithm 1 Ransomware detection in MimosaFTL.

Require:
The RRA list, and each access request in the RRA list includes the access type (read/write),
the starting Destination LBA (DLBA) and the size (Len).

1: nA = 0;nB = 0;nC = 0;
2: Initialize a map < key, value >, where key = “Len” and value =

“# of appearances of this Len”;
3: for each access request in the RRA list do
4: if read′s DLBA == write′s DLBA && |read′s Len− write′s Len| <= δ then
5: nA + +;
6: end if
7: if read′s DLBA == write′s DLBA && write′s Len < read′s Len then
8: nB + +;
9: end if

10: if |the length of a read request − the total length of the continuous write requests before
the next read request| <= δ then

11: nC + +;
12: end if
13: Update the map : if key (i.e., Len) is not in the map, insert the key and value is

initialized as 1; otherwise, increase the corresponding value by 1
14: end for
15: Obtain the top 3 largest values from the map : v1, v2, v3;
16: nS = v1 + v2 + v3;
17: n← length of the RRA list;
18: if (nA/n > Threshold 1) || (nB/n > Threshold 1) || (nC/n > Threshold 1) then
19: Ransomware detected;
20: else if (nS/n > Threshold 2) && Mappings of the destination LBAs of the continuous

read become invalid gradually then
21: Ransomware detected;
22: end if

conclude that a type D ransomware attack is detected.

4.4 Data Backup

To allow restoring external storage after ransomware attacks, MimosaFTL needs to back up both
data and metadata (e.g., the mapping table, which records mappings between LBAs and PBAs).
Back up metadata. For creating metadata backup, we take advantage of the fact that Mi-
mosaFTL has a detection component. Periodically, if no ransomware is detected, we will create
a redundant copy of the current essential metadata and discard old versions of metadata. Note
that: 1) The size of metadata is usually much smaller than data, and hence only a few flash blocks
are required to be used to store metadata. In addition, the blocks storing metadata backup are
usually invisible to the OS, and hence cannot be corrupted by ransomware. 2) The metadata will be
correctly backed up if the ransomware is correctly detected, which is of high probability4 according

4Rarely when false negative happens, the metadata may not be properly backed up, and they can only be recovered

12

to our evaluation in Sec. 6.
Back up data. Thanks to the out-of-place-update feature of flash-based block devices, the data
will be temporarily preserved and can be used for data recovery from ransomware attack. However,
garbage collection will eventually reclaim those data which have been corrupted by ransomware
since they have become invalid. Simply disabling garbage collection [14] can prevent those data
from being removed. This, however, is problematic, since data will fill the entire flash memory
shortly without a garbage collection. Taking advantage of the detection component, we use a
phased garbage collection strategy. The idea is to perform garbage collection periodically only
when the system is sure that there was no ransomware present. Here we define the “phase” as a
time period between two sub-sequential detection processes. When a detection process is invoked
and does not detect presence of ransomware (i.e., the beginning of a phase), the system will perform
the following steps: 1) conducting a garbage collection on blocks storing invalid data5; 2) backing
up the current metadata. In addition, any data being overwritten (note that deletion is a special
overwrite operation) during this phase will be frozen and will not be removed by garbage collection.
When the detection process detects presence of ransomware, the data recovery component will be
invoked (Sec. 4.5).

4.5 Data Recovery

Once ransomware is detected, MimosaFTL will immediately inform the user and make the storage as
read-only. Then, the ransomware will be blocked and removed by the user (blocking and removing
malware is not our focus in this work). Once the attack is confirmed by the user, a recovery
component will be triggered to interact6 with the victim user to restore the external storage being
corrupted by the ransomware. Since the data are preserved due to the out-of-place-update feature
of flash memory, the major problem in the recovery component will be restoring the metadata at the
point of time right before the ransomware starts to damage the external storage (we call this point
of time “corruption point”). Such a recovery design is advantageous, because: 1) The expensive
direct data recovery can be avoided since the “good” data are preserved in flash memory, and by
restoring the metadata which point to the “good” data, the external storage can be recovered. 2)
The recovery of metadata can be done efficiently, considering their small size.

However, restoring the metadata at the corruption point is challenging, because: The detection
component of MimosaFTL relies on observing access behaviors of ransomware for detection, and a
few user files will be corrupted unavoidably before the point of time when ransomware is detected
(we call this point of time “detection point”). Since MimosaFTL periodically backs up the latest
“good” metadata (we call this point of time “latest good point”), we can first restore the external
storage to this latest good point, and then approach the corruption point from the latest good
point.

To restore the metadata at the corruption point, MimosaFTL needs to rely on information
stored in the OOB areas. MimosaFTL will store additional information in the OOB of each flash
page storing user data: backup version number (which records the version number of the periodical
metadata backup), writing sequence number (which records the sequence number of writing in a

by performing “brute force”.
5Rarely when false negative happens, the invalid data which were corrupted by ransomware will be removed by

garbage collection at the beginning of each phase. In this case, MimosaFTL can only restore data within the phase.
This is a limitation of MimosaFTL and will be investigated in our future work.

6User involvement (via customized I/O commands, e.g., SCSI commands) is usually necessary, since only the user
knows the latest version of the data.

13

Figure 4: Recovery timeline of MimosaFTL.

specific periodical metadata backup) and destination LBA. Note that we only use a small portion of
the OOB area, which will not significantly affect its regular use. For example, in our experimental
evaluation, we only need to use 8 bytes of the OOB, which is 12.5% of its entire capacity.

When MimosaFTL detects the ransomware and informs the victim user, the user will trigger the
recovery component to perform the following steps (see Figure 4): First, it will recover the system
to the latest good point (i.e., from point C to A). This step is straightforward, since MimosaFTL
has backed up metadata of point A and all the valid data of point A has been preserved (Sec. 4.4).
Second, to recover the system to the corruption point (i.e., from point A to B), MimosaFTL will
read the OOB areas of the entire physical flash pages, and find out the ones with the largest backup
version number (i.e., the latest backup version), and then create a list of destination LBA and
PBA mappings in the order of their writing sequence number. Next, MimosaFTL will recover the
mapping table at point B using an efficient binary search approach as described below:

MimosaFTL first applies half of the entire changes to the metadata at point A, restoring the
metadata at point B1. The user then checks the data (at the OS level) recovered at point B1. If
the user does not find corruption at B1, the corruption point should be located somewhere between
B1 and C (otherwise, the corruption point should be located somewhere between A and B1), and
the next point being examined should be B2. The metadata at B2 can be restored by applying half
of entire changes between B1 and C to the metadata at point B1. Recursively, the search will reach
the corruption point B. Note that interacting with the user for data recovery is necessary since only
the user knows the latest good state of the data. However, due to the efficient binary search, the
user involvement can be kept small (i.e., log(n), where n is the number of write operations between
the latest good point and the detection point).

The recovery process of MimosaFTL requires interacting with the victim user, which can be
achieved by taking advantage of the reserved operation codes (i.e., 0x60H to 0x7FH) of SCSI
commands [16, 46] if the flash storage medium supports SCSI interface.

14

5 Security Analysis and Discussion

5.1 Security Analysis

A pattern-based detection solution usually cannot guarantee 100% accuracy. In the following, we
analyze the security of MimosaFTL under two cases: 1) the ransomware is correctly detected; 2)
the ransomware is not correctly detected.
Case 1: the detection component correctly detects the ransomware. Clearly in MimosaFTL, both
data and metadata will be correctly backed up and the ransomware is not supposed to bypass the
FTL to corrupt those backups even if it can compromise the host operating system (Sec. 4.1). Once
the ransomware is correctly detected, the recovery component will be correctly triggered by the
user to recover the external storage to the corruption point.
Case 2: the detection component does not correctly detect the ransomware. This usually includes
false positives and false negatives, which will be discussed respectively as follows.

• Rarely, benign applications and regular user operations may exhibit similar access patterns as
ransomware, causing false positives. MimosaFTL can handle false positives because, the data
recovery component is triggered by the user, and the user can simply not trigger the data recovery
component if that is a false positive.

• Some ransomware variants may escape from being detected (e.g., new ransomware variants),
causing false negatives. When the false negative happens, MimosaFTL is at least as good as
FlashGuard [15], which does not employ ransomware detection and can at most allow restoring
data from last check point. Similarly, MimosaFTL can also allow restoring the data from the last
detection if a false negative happens.

5.2 Discussion

Working on the FTL layer rather than the upper layers. MimosaFTL is a solution which
requires being incorporated into the flash translation layer (FTL). This seems unavoidable since its
security strongly relies on the close nature of flash memory. Such an incorporation is not unique,
since a lot of existing security defenses [43, 9, 30, 18, 17, 8, 15, 14] for flash memory have a similar
requirement of incorporating security strategies into the FTL. The incorporation could be achieved
by either collaborating with flash memory vendors or turning the defenses into industry standards.
Handling ransomware-like benign applications. Some special benign applications like en-
cryption, compression, and deletion applications may exhibit ransomware-like access behaviors.
MimosaFTL is designed to not mistakenly detect them as ransomware: 1) For benign encryption
and compression applications, they commonly treat the original file content carefully, since their
ultimate goal is to generate an encrypted/compressed version of the original file, rather than to
restrict access to the file [20]. In other words, the original files usually remain intact when they are
running, though automatic deletion may be deliberately activated by the user after the encryption
or compression is done. 2) For secure deletion applications, they usually open a file and overwrite
its content with new, meaningless data [31], e.g., all zeros. However, they usually will not read the
files during deletion. 3) If the user changes the file content via a benign application (e.g., updating
the data of a Microsoft Word file), it may also generate similar access patterns as ransomware.
However, there are some key differences. For example, benign applications usually read a single
file at a time and modify different parts of the file continuously, but ransomware usually performs
reading and rewriting in an interleaved manner.

15

Protecting SCSI interface. MimosaFTL supports user interaction via SCSI commands (note
that this requires the flash storage media to support SCSI interface). To prevent privileged malware
from abusing this new interface to disturb our design, we can introduce a simple authentication
using secrets only known by the user. Specifically, every time when the SCSI interface is used, the
user needs to provide a secret password which needs to be verified by the FTL (the secret password
is stored in the metadata area of the flash which is invisible to the upper layer and hence the
ransomware). Since the ransomware does not have this secret password and is not able to pass the
authentication in order to use this SCSI interface.

6 Implementation and Evaluation

6.1 Implementation

We have implemented a prototype of MimosaFTL using OpenNFM [10], an open source NAND flash
controller framework. We ported MimosaFTL to LPC-H3131 [25], a development board equipped
with 180 MHz ARM processor, 512 MB NAND flash, and 32 MB SDRAM. The block size of the
NAND flash is 128 KB and the page size is 2 KB. The entire NAND flash has 4,096 erase blocks, and
each block is composed of 64 pages. Moreover, the size of the OOB area in each page is 64 bytes.
Each mapping entry can be represented by 3 bytes, and the mapping table occupies approximately
6 blocks.

6.2 Evaluation

6.2.1 Effectiveness of MimosaFTL in Detection

We evaluate effectiveness of the detection component of MimosaFTL by looking into its false posi-
tives and false negatives.
Dataset construction. To provide a comprehensive evaluation of the detection component, as
shown in Table 2, we collected 346 new prevalent ransomware samples belonging to 11 different
families from VirusTotal (73.4%) and Github (26.6%). Our dataset covers a majority of existing
ransomware families that appear from 2001 to 2018. In addition, we built a dataset containing 95
benign application samples (a portion of them are shown in Table 2), including: 1) software that has
ransomware-like behaviors such as file encryption, compression and data deletion; 2) multimedia
tools and applications (e.g., media player, audio/video transcoding applications, and games); 3)
developer tools; 4) office tools. Besides these benign application samples, we also collected I/O
access requests from installing/upgrading these benign software and web server (e.g., search engine
service, web mail server).
Ransomware detection accuracy. In order to evaluate detection accuracy of MimosaFTL, we
measured both false negatives and false positives, varying the thresholds to determine the best
detection effectiveness. We choose δ as 5 (in LBAs).

First, we evaluated whether MimosaFTL can successfully distinguish ransomware from benign
applications, following a few steps: 1) We ported MimosaFTL to LPC-H3131, and used the board
as an external storage; 2) We ran all the ransomware samples and benign application samples; 3)
We varied the thresholds in the detection algorithm (i.e., Threshold 1 and Threshold 2) and kept
track of those thresholds by which the detection algorithm successfully detects ransomware samples
or mistakenly detects benign application samples as ransomware in Figure 5. The left half of the

16

Table 2: Ransomware samples and portion of the selected benign applications.
Ransomware #Samples Benign application Main capability

Samas 36 7-zip Compression
Cerber 47 Winzip Compression

Ransom32 53 WinRAR Compression
Maktub 14 TrueCrypt Encryption
Jigsaw 56 DiskCryptor Encryption

Radamant 36 SDelete Deletion
CryptoFortress 37 Eraser Deletion

HydraCrypt 29 Davinci Resolve Multimedia tools
WannaCry 12 Eclipse Developers tools

Critroni 20 Anaconda Developers tools
CryptoDefense 6 SQLite Developers tools

figure is for ransomware samples (with thresholds vary between 0.8 and 0.97), and the right half
of the figure is for benign application samples (with threshold vary between 0.02 and 0.5). A clear
difference is observed between the ransomware samples (minimum 0.8) and the benign application
samples (maximum 0.5).

Second, to determine thresholds described in Algorithm 1, we measured false positives and
false negatives by varying Threshold 1 for type A/B/C ransomware and Threshold 2 for type D
ransomware. As shown in Figure 6, MimosaFTL does not have any false positives/false negatives
when Threshold 1 ∈(0.55,0.78) and Threshold 2 ∈(0.63,0.87).

6.2.2 Efficiency of MimosaFTL in Recovery

We evaluate how efficiently the MimosaFTL can recover the external storage corrupted by ran-
somware. Table 3 shows each separate time spent on recovering all the 512MB data in LPC-H3131.
We observe that most time is spent on building the LBA and PBA mappings, which requires reading
OOB areas of all those flash pages storing user data.

Table 3: Individual time components for recovery (in seconds).
Restoration to

point A
Build LBA and
PBA mappings

Rebuild a
mapping table

System
restart

0.65 2.83 0.43 to 1.26 1.32

6.2.3 Impact of MimosaFTL on Flash-based Block Devices

We evaluate impact of MimosaFTL on regular flash-based block devices, in terms of I/O throughput
and lifetime of flash memory.
Impact on flash storage I/O throughput. To access impact of MimosaFTL on the storage
I/O throughput, we benchmarked the original OpenNFM and MimosaFTL using fio [12] with non-
buffered I/O option. We ran fio in a host computer with Intel i5 CPU (3.30GHz, 4GB RAM)
and Windows 10 Pro 64-bit. We set the array length of the RRA list as 150 (i.e., the detection

17

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Te
sla

Cr
yp
t

Ce
rb
er

Cr
yp
to
Fo
rt
re
ss

Lo
ck
ey

CT
B-
Lo
ck
er

Cr
yp
to
Lo
ck
er

Hy
dr
aC
ry
pt

Jig
sa
w

Sa
m
as

Ba
rt

Ra
da
m
an
t

7-
zip

W
in
zip

W
in
RA

R

Tr
ue

Cr
yp
to
r

Di
sk
Cr
yp
to
r

SD
el
et
e

Er
as
er

M
ul
tim

ed
ia
	to

ol
s

de
ve
lo
pe

rs
	to

ol
s

of
fic
e	
to
ol
s

in
st
al
l	s
of
tw

ar
e

up
da
te
	so

ft
w
ar
e

w
eb

	se
rv
er

Th
re
sh
ol
d

Samples	in	the	data	set

Figure 5: The threshold that the detection component successfully detects the ransomware or
mistakenly detects benign applications as ransomware.

component is triggered upon every 150 continuous access requests). We created backup for the
essential FTL metadata (e.g., addresses mapping table) once a day if ransomware is not detected.

The benchmark results for I/O throughput of the two systems are shown in Figure 7. We
observe that MimosaFTL decreases the read (i.e., sequential and random read) throughput by up
to 6.8%, and decreases the write (including sequential and random write) throughput by up to
7.2%. We analyze the additional overhead of MimosaFTL in the following: 1) MimosaFTL running
the detection algorithm needs to update the RRA list, and the detection process is triggered when
the RRA list is filled. Since the RRA list is maintained in RAM, updating it does not incur too
much overhead. In addition, the detection process needs to analyze all the entries in the RRA list
which will incur overhead. However, this only happens periodically. 2) MimosaFTL needs to back up
metadata daily in our implementation, which takes as less as 0.1 seconds for each back up operation.
3) MimosaFTL adopts phased garbage collection, which delays execution of garbage collection on
invalid blocks. MimosaFTL tries to perform garbage collection during idle time, reducing its impact
on the entire performance. 4) To allow restoring mapping tables during recovery, MimosaFTL needs
to write relevant information to the OOB area of each page. Compared to OpenNFM, this does
not bring extra overhead, as OpenNFM also needs to keep similar information in the OOB area to
enable recovery from power failure.
Impact on the flash device’s lifetime. To prolong lifetime of flash memory, MimosaFTL utilizes
a global wear leveling strategy. In MimosaFTL, when allocating blocks, blocks with smaller P/E
cycles will be allocated first. In addition, the blocks having larger P/E cycles will be swapped with
blocks having smaller P/E cycles. To evaluate wear leveling effectiveness, we use hoover economic

18

0
10
20
30
40
50
60
70
80
90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ra
te
	V
al
ue

	(%
)

Threshold	Value

False	Positive

False	Negative

0
10
20
30
40
50
60
70
80
90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ra
te
	V
al
ue

	(%
)

Threshold	Value

False	Positive

False	Negative

(b)	Threshold_2	 for	type	D	ransomware(a)	Threshold_1	for	type	A/B/C	ransomware

Figure 6: The false positive rate and false negative rate vary with adjustment of the threshold.

Figure 7: Comparisons of read/write throughput (KB/s) between OpenNFM and MimosaFTL. SR
- sequential read, RR - random read, SW - sequential write, RW - random write.

wealth inequality indicator [32, 8, 18], which calculates an appropriately normalized sum of the
difference between each measurement and their mean. Assuming erasure counts of all the n erase
blocks are e1, e2,..., en, and E =

∑n
i=1 ei, a wear leveling inequality (WLI) can be computed as:

19

WLI = 1
2

∑n
i=1‖

ei
E −

1
n‖. This indicates the fraction of erasures that must be re-assigned to other

blocks in order to achieve completely even wear.
We repeatedly wrote data to the board, completely filled the 480 MB flash, and then erased

the data. After having written 480 GB data, we calculated the number of erasures performed on
each flash block. We then computed the WLI, obtaining 9.2%. This small value indicates a small
impact of MimosaFTL on the lifetime of flash memory.

7 Related Work

The existing work of ransomware defense can be categorized into detection and recovery.
Ransomware detection. Existing ransomware detection approaches mainly monitor typical ran-
somware file system activities [20, 21, 34, 11] or analyze cryptographic primitives [21, 11, 23].
Kharraz et al. [21] were the first to analyze a large number of ransomware samples. They suggest
some potential defenses in term of file system interactions, encryption mechanisms and financial
incentives. Unveil [20] generates an artificial user environment and monitors desktop lockers, file
access patterns and I/O data entropy. CryptoDrop [34] observes file type changes and measures
file modifications using similarity-preserving hash functions and shannon entropy to detect ran-
somware. ShieldFS [11] monitors file system access activities and collects features like folder listing,
file read/write/rename, file type and write entropy.

Additionally, other work utilizes honeypot techniques [28], software-defined networking (SDN) [7]
or machine learning approaches [35] for ransomware detection. The detection approaches discussed
so far are workable under the assumption that the OS is trusted and the malware cannot compro-
mise it. However, advanced ransomware may run with root privileges, and is able to disable or
bypass the detection mechanisms. The detection component of MimosaFTL is secure against this
type of privileged ransomware.
Data recovery from ransomware attacks. Inspired by copy-on-write file systems, ShieldFS [11]
automatically shadows a file whenever the original one is modified. PayBreak [23] leverages the fact
that in a hybrid cryptosystem the session key must be used during the symmetric encryption. It
observes the use of these keys, holds them in escrow, and is able to decrypt files that would otherwise
only be recoverable by paying the ransom. The aforementioned approaches are vulnerable to the
privileged ransomware which can compromise the OS and disturb the data (or key) recovery.

FlashGuard [15] can defend against the privileged ransomware by exploiting features present
in the lower layer flash memory. However, due to lack of a detection algorithm as well as a user-
friendly recovery component, FlashGuard is far from being practical. SSD-Insider [5] incorporates
a ransomware detection component based on the overwriting patterns in a small fixed time window
(e.g., 10 seconds). However, SSD-Insider is not practical either because: First, it relies on an
observation that ransomware “conducts overwriting immediately after reading and encrypting the
victim’s file”, which is not necessarily true according to our study (Sec 3). Second, its recovery
component is coarsely designed and can only recover data before 10 seconds.

8 Conclusion

In this work, we propose MimosaFTL, the first secure yet more practical ransomware defense
strategy for mobile computing devices that are equipped with flash memory as external storage.

20

Security analysis and experimental evaluation show that MimosaFTL can defend against privileged
ransomware with a small negative impact on storage performance and device’s lifetime.

References

[1] Virustotal. https://www.virustotal.com/en/, 2018.

[2] Mohammad Mehdi Ahmadian, Hamid Reza Shahriari, and Seyed Mohammad Ghaffarian.
Connection-monitor & connection-breaker: A novel approach for prevention and detection
of high survivable ransomwares. In Information Security and Cryptology (ISCISC), 2015 12th
International Iranian Society of Cryptology Conference on, pages 79–84. IEEE, 2015.

[3] Mohammad Mehdi Ahmadian, Hamid Reza Shahriari, and Seyed Mohammad Ghaffarian.
Connection-monitor & connection-breaker: A novel approach for prevention and detection
of high survivable ransomwares. pages 79–84, 2015.

[4] Nicolo Andronio, Stefano Zanero, and Federico Maggi. Heldroid: Dissecting and detecting
mobile ransomware. pages 382–404, 2015.

[5] SungHa Baek, Youngdon Jung, Aziz Mohaisen, Sungjin Lee, and DaeHun Nyang. Ssd-insider:
Internal defense of solid-state drive against ransomware with perfect data recovery. In 38th
IEEE International Conference on Distributed Computing Systems,ICDCS 2018, Vienna, Aus-
tria, July 2-6, 2018, pages 875–884, 2018.

[6] Matias Bjørling, Javier González, and Philippe Bonnet. Lightnvm: The linux open-channel
ssd subsystem. In FAST, pages 359–374, 2017.

[7] Krzysztof Cabaj, Marcin Gregorczyk, and Wojciech Mazurczyk. Software-defined networking-
based crypto ransomware detection using http traffic characteristics. Computers & Electrical
Engineering, 2017.

[8] Bo Chen, Shijie Jia, Luning Xia, and Peng Liu. Sanitizing data is not enough!: towards
sanitizing structural artifacts in flash media. In Proceedings of the 32nd Annual Conference
on Computer Security Applications, pages 496–507. ACM, 2016.

[9] Bo Chen and Radu Sion. Hiflash: A history independent flash device. arXiv preprint
arXiv:1511.05180, 2015.

[10] Google Code. Opennfm. https://code.google.com/p/opennfm/, 2011.

[11] Andrea Continella, Alessandro Guagnelli, Giovanni Zingaro, Giulio De Pasquale, Alessandro
Barenghi, Stefano Zanero, and Federico Maggi. Shieldfs: a self-healing, ransomware-aware
filesystem. In Proceedings of the 32nd Annual Conference on Computer Security Applications,
pages 336–347. ACM, 2016.

[12] Freecode. fio. http://freecode.com/projects/fio, 2014.

[13] Github. A repository of live malwares for your own joy and pleasure.
https://github.com/ytisf/theZoo, 2018.

21

[14] Le Guan, Shijie Jia, Bo Chen, Fengwei Zhang, Bo Luo, Jingqiang Lin, Peng Liu, Xinyu Xing,
and Luning Xia. Supporting transparent snapshot for bare-metal malware analysis on mobile
devices. In Proceedings of the 33rd Annual Computer Security Applications Conference, pages
339–349. ACM, 2017.

[15] Jian Huang, Jun Xu, Xinyu Xing, Peng Liu, and Moinuddin K Qureshi. Flashguard: Leverag-
ing intrinsic flash properties to defend against encryption ransomware. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, pages 2231–2244.
ACM, 2017.

[16] INCITS. Scsi command operation codes, 2015. http://www.t10.org/lists/op-num.htm.

[17] Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. Nfps: Adding undetectable secure deletion to
flash translation layer. In Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, pages 305–315. ACM, 2016.

[18] Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. Deftl: Implementing plausibly deniable
encryption in flash translation layer. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 2217–2229. ACM, 2017.

[19] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman,
and Angela Y. Wu. An efficient k-means clustering algorithm: Analysis and implementation.
IEEE Trans. Pattern Anal. Mach. Intell., 24(7):881–892, 2002.

[20] Amin Kharraz, Sajjad Arshad, Collin Mulliner, William K Robertson, and Engin Kirda. Unveil:
A large-scale, automated approach to detecting ransomware. In USENIX Security Symposium,
pages 757–772, 2016.

[21] Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge, and Engin Kirda. Cutting
the gordian knot: A look under the hood of ransomware attacks. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment, pages 3–24. Springer,
2015.

[22] Youngjae Kim, Brendan Tauras, Aayush Gupta, and Bhuvan Urgaonkar. Flashsim: A simula-
tor for nand flash-based solid-state drives. In Advances in System Simulation, 2009. SIMUL’09.
First International Conference on, pages 125–131. IEEE, 2009.

[23] Eugene Kolodenker, William Koch, Gianluca Stringhini, and Manuel Egele. Paybreak: defense
against cryptographic ransomware. In Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, pages 599–611. ACM, 2017.

[24] Xin Luo and Qinyu Liao. Awareness education as the key to ransomware prevention. Infor-
mation Systems Security, 16(4):195–202, 2007.

[25] Mantech. Lpc-h3131. http://www.mantech.co.za/, 2017.

[26] Mcafee. Wannacry: Ransomware spreads like wildfire, attacks over 150 coun-
tries. https://securingtomorrow.mcafee.com/consumer/consumer-threat-notices/

wannacry-ransomware-attacks/.

22

[27] Shagufta Mehnaz, Anand Mudgerikar, and Elisa Bertino. Rwguard: A real-time detection
system against cryptographic ransomware. In International Symposium on Research in Attacks,
Intrusions, and Defenses, pages 114–136. Springer, 2018.

[28] Chris Moore. Detecting ransomware with honeypot techniques. In Cybersecurity and Cyber-
forensics Conference (CCC), 2016, pages 77–81. IEEE, 2016.

[29] Bharti Nagpal and Vinayak Wadhwa. Cryptoviral extortion: Evolution, scenarios, and analysis.
In Proceedings of the International Conference on Signal, Networks, Computing, and Systems,
pages 309–316. Springer, 2016.

[30] Joon-Young Paik, Keuntae Shin, and Eun-Sun Cho. Poster: Self-defensible storage devices
based on flash memory against ransomware. In Proceedings of IEEE Symposium on Security
and Privacy, 2016.

[31] Joel Reardon, David A Basin, and Srdjan Capkun. Sok: Secure data deletion. ieee symposium
on security and privacy, 12(3):301–315, 2013.

[32] Joel Reardon, Srdjan Capkun, and David Basin. Data node encrypted file system: Efficient
secure deletion for flash memory. pages 17–17, 2012.

[33] PJ Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis. Journal of Computational & Applied Mathematics., 20(20):53–65, 1999.

[34] Nolen Scaife, Henry Carter, Patrick Traynor, and Kevin RB Butler. Cryptolock (and drop it):
stopping ransomware attacks on user data. In Distributed Computing Systems (ICDCS), 2016
IEEE 36th International Conference on, pages 303–312. IEEE, 2016.

[35] Daniele Sgandurra, Luis Muñoz-González, Rabih Mohsen, and Emil C Lupu. Automated
dynamic analysis of ransomware: Benefits, limitations and use for detection. arXiv preprint
arXiv:1609.03020, 2016.

[36] SOFTPEDIA. Tera term pro web. http://www.softpedia.com/get/Network-Tools/Telnet-SSH-
Clients/Tera-Term-Web.shtml, 2018.

[37] Statista. Number of mobile phone users worldwide from 2013 to 2019
(in billions), 2018. https://www.statista.com/statistics/274774/

forecast-of-mobile-phone-users-worldwide/.

[38] Kul Prasad Subedi, Daya Ram Budhathoki, Bo Chen, and Dipankar Dasgupta. Rds3: Ran-
somware defense strategy by using stealthily spare space. In Computational Intelligence (SSCI),
2017 IEEE Symposium Series on, pages 1–8. IEEE, 2017.

[39] Symantec. 2017 internet security threat report. https://www.symantec.com/

security-center/threat-report.

[40] Symantec. A new breed of threat: Wannacry and petya. https://www.

symantec.com/content/dam/symantec/docs/security-center/white-papers/

istr-ransomware-2017-en.pdf.

23

[41] Cactus Technologies. Solid state drive primer-controller functions-
trim command. https://www.cactus-tech.com/resources/blog/details/

solid-state-drive-primer-12-controller-functions-trim-command.

[42] Thebestvpn. Cyber security statistics. https://thebestvpn.com/

cyber-security-statistics-2018/.

[43] Michael Yung Chung Wei, Laura M Grupp, Frederick E Spada, and Steven Swanson. Reliably
erasing data from flash-based solid state drives. In Fast, volume 11, pages 8–8, 2011.

[44] Wikipedia. Trojan.winlock. https://ru.wikipedia.org/wiki/Trojan.Winlock.

[45] Joobeom Yun, Junbeom Hur, Youngjoo Shin, and Dongyoung Koo. Cldsafe: An efficient file
backup system in cloud storage against ransomware. IEICE TRANSACTIONS on Information
and Systems, 100(9):2228–2231, 2017.

[46] Qionglu Zhang, Shijie Jia, Bing Chang, and Bo Chen. Ensuring data confidentiality via plau-
sibly deniable encryption and secure deletion–a survey. Cybersecurity, 1(1), 2018.

24

