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Abstract—Ransomware attacks are becoming prevalent
nowadays with the increased use of crypto-currencies. As the
most harmful variant of ransomware, crypto-ransomware en-
crypts the victim’s valuable data, and asks for ransom money.
Paying the ransom money, however, may not guarantee recovery
of the data being encrypted. Most of the existing work for
ransomware defense focuses on ransomware detection. A few
of them consider data recovery from such attacks, but they are
not able to defend against ransomware which can obtain a high
system privilege.

In this work, we design RDS3, a novel Ransomware Defense
Strategy, in which we Stealthily back up data in the Spare
space of a computing device, such that the data encrypted
by ransomware can be restored. Our key concept is that the
unused space can backup critical data are fully isolated from the
system (which can be affected by Ransomware). In this way, the
ransomware is not able to “touch” the backup data regardless of
what privilege it can obtain. Security analysis and experimental
evaluation show that RDS3 can mitigate ransomware attacks
with an acceptable overhead.

I. INTRODUCTION

Ransomware attacks suddenly became very prevalent in
recent years with the flourishing of crypto-currencies like
bitcoin. Due to their anonymity, crypto-currencies offer ran-
somware makers a great mean of receiving ransom money
without being identified. A recent security incident caused by
a ransomware attack infected 900 systems used by the San
Francisco Municipal Transportation Agency [6]. WannaCry
ransomware attacked more than 300,000 computers from 99
countries [13]. According to FBI [8], ransomware has become
a billion dollar a year crime and is still under continuous
growth.

Similar to malware, ransomware utilizes all types of
means (e.g., spam emails, mal-advertisements, social engi-
neering) to propagate to a victim computing system. Then, it
will either lock the victim’s system (i.e., locker ransomware)
or encrypt the data (i.e., crypto-ransomware) in the victim’s
system. Finally, it will require the victim to pay the ransom
money in order to unlock the system or obtain the key for
decrypting the data. According to the recent Internet Security
Threat Report [4], crypto-ransomware has now dominated the
ransomware family. Therefore in this paper, we mainly focus
on defending against crypto-ransomware.

Paying the ransom money [7, 11] may not provide the vic-
tim a guarantee to obtain the actual key for decrypting the data
attacked by ransomware. Even worse, this provides incentive

to the ransomware makers to improve their ransomware
and launch more advanced ransomware attacks. The existing
research of ransomware [16, 21, 25, 32] mainly focused on
designing effective ransomware detectors. Their ultimate goal
is to detect ransomware in a timely manner such that the
system can block ransomware before it causes more damage
to the victim’s data. Most ransomware detectors [21, 25, 32]
rely on dynamic analysis [33], which usually allows the
ransomware to run in order to observe the abnormal behavior.
This unfortunately implies that regardless of the effectiveness
of the detectors, a few victim’s data are always encrypted
by the ransomware before it is detected and blocked. In
other words, a recovery component seems indispensable in
ransomware defense.

The recovery component requires creating backup data,
such that the data encrypted by ransomware are always
recoverable. In general, if the victims periodically back up
their data using external storage media or public cloud
services, the ransomware attack would not even become an
issue [5]. However, most people today are reluctant to back
up their data for potential ransomware attacks due to three
concerns: First, people usually do not even think they will
become ransomware victims until they are really attacked;
second, periodically backing up data will create additional
work burden; third, backing up data in external storage media
or public cloud services requires the users to plan additional
budget in purchasing hardware equipment or cloud services.
If a cloud storage service is used, an additional expense will
be also required for Internet access.

The first concern can be mitigated by raising the aware-
ness of ransomware attacks through education or media cam-
paigns. The second concern can be resolved by automating
the backup process such that the users can be liberated from
such a burden. This work, however, aims to address the third
concern, which is the most challenging one. Having observed
that most computing devices usually possess a certain amount
of spare space, we designed RDS3, a Ransomware Defense
Strategy, by taking advantage of Spare space to Stealthily
store a certain amount of redundant data. This is advanta-
geous, since it fully utilizes the existing computing resources
to defend against ransomware, eliminating the need of pur-
chasing additional unnecessary computing resources. RDS3
consists of two main components, a detector component and a
recovery component. The detector component will monitor the
computing device. Once the ransomware is detected, it will
take action to block the ransomware and inform the recovery



component. The recovery component will periodically back
up the data to the spare space. Once the ransomware has been
detected by the detector, it will take action to restore the data
corrupted by the ransomware.

To design RDS3, we faced two main issues: 1) How can
we prevent ransomware from having access to the backup data
even though it is able to obtain a high privilege? By escalating
to a high privilege, the ransomware probably can have access
to the backup data, and simply encrypts them to attack our
design. Previous work [21] unfortunately cannot address this
issue; and 2) How can we effectively utilize the spare space?
This is a practical issue, since a computing device usually
possesses a very limited amount of spare space, which is
usually not able to hold a mirror copy of the entire data. To
address the first issue, we separate the entire storage medium
into a regular volume and a backup volume. The regular
volume is managed by a regular user OS which is for daily
use; the backup volume is managed by a light-weight OS,
which only runs the small backup/recovery applications. Both
OSes are further isolated in such a way that regardless of what
privilege the ransomware can obtain in the user OS, it will
not be able to have access to the backup volume. To address
the second issue, our ideas are: first, we back up the data in
an incremental manner by utilizing delta encoding; second,
we offer flexibility to the user on determining what data will
be backed up, by allowing the user to stealthily mark his/her
important files. Here “stealthily” means that these “marks” are
only recognizable by the recovery component rather than the
ransomware. This is necessary as it can prevent ransomware
from learning what data may be critical to the user.

Contributions. Our contributions can be summarized as
follows:

• To the best of our knowledge, RDS3 is the first
design for ransomware defense which contains both
a detector component and a recovery component and,
meanwhile, is able to defend against the ransomware
that can obtain a high privilege (e.g., root privilege).

• RDS3 fully utilizes the existing resources in a com-
puting device to achieve a certain level of security.
This idea itself may possess independent interest.

• We analyze the security of RDS3. In addition, we
implement RDS3 in a real-world system, and exper-
imentally evaluate its performance.

II. BACKGROUND

A. Ransomware

Ransomware is a special type of malware whose sole
purpose is to prevent victims from accessing their valuable
data either by encrypting the data or locking the systems. By
leveraging various attack means, e.g., spam emails, malicious
advertisements, social engineering, SMS messages, Traffic
Distribution System (TDS), etc., the ransomware gets itself
installed in the victims computing system, unbeknownst to
the victim. Later, the ransomware either locks the system or
encrypts the data stored in the device, and extorts the victim
for money in exchange for the key to unlock the system or

decrypt the data. In this sense, the existing ransomware can be
categorized into crypto-ransomware and locker ransomware.

The crypto-ransomware asks for ransom money by en-
crypting the victim’s valuable data, while the locker ran-
somware locks the victim’s device and demands for money
in order to unlock it. Typical crypto-ransomware includes
CryptoWall [20], CryptoLocker [24], and Locky [19], and
typical locker ransomware includes Winlocker [31]. In com-
parison, the crypto-ransomware is much more harmful than
the locker ransomware, since locker ransomware only locks
the victim out of the system, and the victim can still have
access to his/her data, e.g., by removing the storage medium
from the infected computing system, and using it in another
non-infected computing system to copy out the data. Crypto-
ransomware uses cryptographic encryption algorithms to en-
crypt the victim’s data and the key may be stored in a remote
command-and-control (i.e., CC) server, rendering it difficult
to recover the data being encrypted without paying the ransom
money.

B. Isolation Techniques

Secure computation requires a secure processing environ-
ment which can ensure the protected resources (e.g., memory
and peripherals) will not be tampered/eavesdropped by the
adversary. This usually relies on isolation techniques, by
which the protected resources will be completely isolated
from the unsecure environment. In general, isolation can be
achieved using either hardware or software. The hardware-
based isolation includes ARM TrustZone, Intel Software
Guard Extensions ,(SGX) etc.

The software-based isolation completely depends on the
confinement provided by the layers of software or kernel. It
can be achieved by various tools and techniques. One example
is chroot, which provides some form of file system isolation
for non-root processes. However, users having root privileges
can easily escape from the chroot isolation. Another popular
tool for isolation is software container, e.g., Docker [28] and
Linux container [22]. The most popular way of achieving
software-based isolation is via virtual machine monitors. A
virtual machine (VM) is a virtual computer system, which can
be viewed as an isolated independent software container with
an operating system and applications inside. Multiple VMs
can be put on a single physical computer, enabling multiple
operating systems and applications to run on one single physi-
cal host computer. As a thin software layer stays between host
operating system and the guest operation system, the virtual
machine monitor can decouple the virtual machines from the
host and dynamically allocate computing resources to each
virtual machine as needed. Popular virtual machine monitors
include VMware vSphere [12], Citrix XenServer [14], Mi-
crosoft Hyper-V [2], Oracle VirtualBox [30], etc.

III. SYSTEM AND ATTACK MODEL

System model. We mainly consider computing devices which
are equipped with mass storage. These include servers, desk-
tops, laptops, etc. We do not consider those computing devices
which are equipped with limited resources, e.g., smart phones.
This is because, we rely on the assumption that the computing
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Fig. 1: An attack on ShieldFS

devices being protected should have enough empty space,
which is not necessarily true for those devices (smart phones,
smart watches, etc.) equipped with limited resources.

Attack model. We only consider crypto-ransomware which
tries to encrypt the data in the victim device. After being
able to get itself installed in a running environment, the
ransomware is able to escalate its privilege to a level equal to
the operating system which controls this environment (e.g.,
root privilege). This may be achieved by exploiting various
system vulnerabilities [10, 23]. We do not consider other types
of malware which exhibit different attack behavior.

IV. ATTACK SCENARIOS

The sole existing work for ransomware defense which
includes both the detector component and the recovery com-
ponent is ShieldFS [21]. ShieldFS automatically shadows a
file to a shadow drive whenever it is modified, and such
a shadow copy can be used to recover the file encrypted
by the ransomware. However, if the ransomware can obtain
high system privilege and can have access to the shadow
copy, it can simply encrypt both the original copy and the
shadow copy, rendering the file unrecoverable (see Figure 1).
Although ShieldFS claims to make the shadow drive read-
only to deny any modification request, this cannot work if
the ransomware obtains high privilege (e.g., root privilege).

V. OUR DESIGN: RDS3

This section presents our main design, RDS3, a Ran-
somware Defense Strategy utilizing Spare space to Stealthily
store a certain amount of backup data. Our design aims to
defend against ransomware which can obtain high system
privilege.

A. Key Insights

Before presenting our main design, we first describe our
key insights by discussing a few questions below.

Question 1: why are backup data necessary for ran-
somware defense?

A main objective of ransomware defense is to restore the
data encrypted by ransomware. To achieve such a goal, a
straightforward solution could be to obtain the decryption key.
This may be possible if the ransomware utilizes symmetric
encryption, since the key was present in the victim computing
device in the past which may be extracted [27]. However,
such a solution cannot work when the ransomware directly

or indirectly utilizes asymmetric encryption, which is unfor-
tunately the case dominating the existing ransomware. For
asymmetric encryption, computing the private key by brute
force is usually not possible considering the large key space
used by the ransomware (e.g., an RSA key is at least 1024-
bit). Therefore, obtaining the decryption key without paying
the ransom money seems infeasible. Without obtaining the
decryption key, the only option for recovering data being
corrupted by ransomware is by creating backup data.

Question 2: where to store the backup data?

Simply relying on external storage (e.g., a mobile disk or
a cloud storage provider like Amazon S3) is not necessarily
good, since it requires the user to pay for additional hardware
or services, as well as bring additional burden to the user
on maintaining such an additional medium. By observing
that most of the computing devices usually possess a certain
amount of spare space (see Section VI-B), we propose to
utilize a portion of the spare space to store the backup data.
This is advantageous, as it eliminates the need of purchasing
additional storage media/services. Most importantly, for the
first time, we design a secure system which can mitigate
ransomware attacks by fully utilizing the remaining resources
in a computing device.

Question 3: how to make the space which stores the
backup data inaccessible by ransomware?

A question that remains unanswered is how to ensure that
the ransomware is not able to encrypt the backup data stored
in the spare space, regardless of its privilege. Intuitively, this
can be achieved by restricting the privilege the ransomware
can obtain, and meanwhile storing the backup data stealthily
in the spare space. We introduce a regular volume and a
backup volume. The regular volume is used for storage of
regular data, while the backup volume is used for storage
of backup data. Note that the backup volume is built using
the spare space. To prevent the ransomware from having
access to the backup volume by escalating its privilege, we
leverage isolation techniques. Specifically, a user operating
system is introduced to manage the regular volume, with
all the applications for daily use. A light-weight operating
system is introduced to manage the backup volume, with a
few small applications simply supporting backup and recovery
functionality. Then, an isolation technique is introduced to
prevent the user OS from accessing the backup volume. This
ensures that even though ransomware can compromise the
entire user OS and obtain the root privilege, it is still not able
to have access to the backup volume, as the backup volume
is transparent to the user OS.

Question 4: when to back up the data?

By observing that ransomware always needs to modify
the victim data (e.g., over-write the data with their encrypted
version, or simply delete them which is also an over-write
operation), ShieldFS [21] creates a shadow file copy each
time when a modify operation is performed on a file. This
may be problematic, as a piece of ransomware which is able
to obtain root privilege can easily observe this special system
behavior and intercept into the back up process to disturb the
defense (e.g., corrupt the shadow copy). The aforementioned
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issue is due to the fact that the back up process happens when
ranswomare is already present in the system. To address this
issue, we move the back up process backward, such that data
will be backed up before the ransomware is present. This
however, makes it challenging to determine what data need
to be backed up, as the system has no knowledge about what
data the ransomware will corrupt.

Question 5: what data will be backed up?

To defend against ransomware which can obtain root
privilege, it is necessary to back up data before the ran-
somware is present in the victim system. However, this
sacrifices the advantage of knowing what files the ransomware
is “touching.” Without such knowledge, the system is not able
to identify those files which will be most likely corrupted by
ransomware. One remediation could be to back up all the
files in the regular volume, which is unfortunately infeasible
considering that the spare space in a computing device is
usually small. We address this issue from another angle. We
select the files to be backed up based on their “importance”
to the device owner. However, to identify whether a file is
important or not is not straightforward. We believe a reliable
way is to allow the device owner to make this decision, as
he/she is the right person who clearly knows whether a file
is important to him/her. Specifically, the system marks each
newly created file as “unimportant” by default, and a system
tool is provided to allow the device owner to re-mark any file
as “important.”

Note that we should prevent ransomware from learning the
“importance” information. Otherwise, it may take advantage
of this information to launch more advanced attacks, e.g.,
steal important files (which only incurs read operations and
is difficult to be detected) and ask for ransom money by
threatening to release them to public. To protect the “impor-
tance” information, we encrypt it via asymmetric encryption.
Specifically, the “importance” information is encrypted using
a public key. The ransomware is not able to obtain the
corresponding private key, and is thus not able to decrypt
this information. For different files, the same “importance”
information will be encrypted into different cipher-texts, such
that the ransomware is not able to learn whether any given
files are in the same “importance” category. To achieve this,
we embed the file ID into the encryption. In addition, we
embed a large nonce when performing encryption, such that
with negligible probability, the same cipher-text can be re-
generated for the same file by knowing the file ID.

B. Design Details

We are now ready to present our main design, RDS3.
Let (KGen,AEnc,ADec) be a secure asymmetric encryption
scheme.

The overall architecture of RDS3 is shown in Figure 2.
We create two volumes, a regular volume and a backup
volume over the underlying storage medium (e.g., disk). A
user operating system is used to manage the regular volume
for daily use, e.g., all the daily user applications are run
within this OS, and all the user data are stored in the regular
volume. A light-weight tiny OS is used to manage the backup
volume for backup purposes. Only a few applications (e.g.,

Fig. 2: The architecture of RDS3

backup app and recovery app) are run in this tiny OS, and
only the backup data are stored in the backup volume. All
the computing resources (e.g., storage space, memory) and
components (e.g., user OS, backup OS) are managed by a
virtual machine monitor. The isolation provided by the virtual
machine monitor ensures that the user OS is not able to access
the backup volume1. To simplify the notations, we use VM1
for the user operating system, and VM2 for the tiny OS for
backup volume.

RDS3 consists of two components: a detector component
and a recovery component. The detector component runs in
VM1. It constantly monitors VM1 and will notify the recovery
component when ransomware is detected. The recovery com-
ponent mainly runs in VM2. It periodically pulls data from the
regular volume for back up purposes. Once having received
the notification from the detector, it will work with VM1 to
restore the data being protected. There are a large number
of detectors available in the literature [16, 21, 25, 32] that
monitor either system behavior or file access patterns, which
can be simply adapted here for our detector component. To
prevent the ransomware from disturbing the detector compo-
nent, we should run this component in a privilege higher than
the root privilege of VM1 (e.g., a privilege comparable to the
that of the virtual machine monitor). In the following, we will
only elaborate the design of the recovery component, which
is the main focus of this paper.

1) Recovery Component: The recovery component con-
sists of a backup application (i.e., backup app) and a recovery
application (i.e., recovery app). The backup app periodically
communicates with VM1 to pull data from the regular vol-
ume, and stores them to the backup volume. The recovery app
is activated when ransomware is found and blocked. It will
then work with VM1 to read data from the backup volume,
to recover the data being corrupted by the ransomware in the
regular volume. Note that VM1 is not able to have direct
access to the backup volume due to isolation enforced by the
virtual machine monitor.

Since the backup volume is created using the spare space
in a computing device, it will be limited in capacity (e.g.,
10%-20% of the entire storage capacity). To address this

1Here we assume the virtual machine monitor can provide a good isolation.
Penetrating the barrier created by virtualization is out of our research scope.
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concern, we do the following: first, we allow the device owner
to mark his/her “important” files; second, when backing up
the data to the backup volume, we utilize delta encoding [18]
such that only the difference between two subsequent version
is transmitted and stored. We will elaborate the key func-
tionality of the recovery component, namely, initialization,
marker generation, back up data, and data recovery.

Initialization. A key pair (pk, sk) is generated for asymmet-
ric encryption by running (pk, sk) ← KGen(λ), where λ is a
secure parameter. The public key pk is distributed to VM1,
and the private key sk is kept secret in VM2. The device
owner picks a credential and keeps it in a secure location.

Marker generation. We allow the device owner to mark
the files as “important.” These files will be periodically
pulled by the backup app to store in the backup volume. To
generate the marker, we face two challenges: 1) where to
store the marker; 2) how to keep the marker secret from the
ransomware. By observing that most file systems maintain a
set of attributes for each file, we address the first challenge
by storing the marker information as one additional file
attribute. If the file is an “important” file, we simply set the
marker as “1”. Otherwise, the marker is “0”. To address the
second challenge, we encrypt the marker using asymmetric
encryption. This is necessary, as the marker is generated
in VM1. Using symmetric encryption in VM1 may create
a risk of key leakage, since we cannot predict when the
ransomware is present. Using asymmetric encryption only
requires the public key to be present during encryption,
which will mitigate the aforementioned risk. In addition,
to prevent the ransomware from learning that two different
files have the same mark, we embed the file ID into the
encryption. A marker attribute for file f1 will be computed as:
AEncpk(marker for f1||file ID for f1||nonce). To ensure
that the file ID is unique for each file, it can be generated by
concatenating the ID of the computing device and the file
name.The nonce is a large enough random number generated
each time when computing a marker attribute.

The detailed process for marker generation is shown in
Algorithm 1.

Algorithm 1 Marker generation

1: procedure GenMarker(pk, file id, marker, λ)
2: nonce

R← {0, 1}λ
3: ciphertext ← AEncpk(marker||file id||nonce)
4: attribute ← Base64Encode(ciphertext)
5: ret ← SetFileAttribute(attribute)
6: return ret

When a file is created, the system will mark it as “0”
by default. This can be achieved by running GenMarker(pk,
file id, 0, λ). In a Unix based system, inotify API provides
a mechanism to monitor filesystem events [3]. When a new
file is created, inotify triggers GenMarker to set the default
marker.

Back up data. Periodically, the backup app running in VM2
will contact VM1 to pull the data from the regular volume.
VM1 keeps track of the files being modified in this period T ,
and the corresponding encrypted markers and file IDs will be

pulled by the backup app. The backup app will then decrypt
all the markers using the private key, and identify those
“important” files which have been changed. It then requests
VM1 to send back those files. To save both communication
and storage, the backup can be performed in an incremental
manner. Specifically, only the difference (i.e., delta) between
two file versions will be transmitted and stored.

The detailed backup process is shown in Algorithm 2. In
this algorithm, the backup app first pulls the attributes from
VM1 for those files which have been changed in this period
(i.e., PullAttributes). For each file, the backup app obtains the
“marker” attribute (i.e., GetFileAttribute), decodes it using
base64 (i.e., Base64Decode), which is then decrypted using
the private key sk. By removing the file ID, we can simply
obtain the marker, which determines whether we should back
up the corresponding file or not.

Algorithm 2 Back up data

1: procedure BackUp(Host, sk)
2: S ←PullAttributes(Host)
3: for ∀s ∈ S do
4: attribute ← GetFileAttribute(s)
5: ciphertext ← Base64Decode(attribute)
6: plaintext ← ADecsk(ciphertext)
7: obtain marker from plaintext
8: if marker then
9: pull this file from regular volume using delta

encoding
10: return true

Data recovery. Once the detector component has detected
and blocked a piece of ransomware, it will inform the
recovery app running in VM2. This process usually requires
the involvement of the device owner. Specifically, the data
owner needs to provide the credential (e.g., a secret password)
in VM1 which is used to pass the authentication of VM2.

After the VM1 successfully passes the authentication, the
recovery app will check the backup volume to see whether
a corrupted file has been backed up previously. If a backup
copy is found, the recovery app will reconstruct this copy
(this usually requires starting from the initial file version, and
applying all the subsequent deltas [18]), and send it back
to VM1. Otherwise, this corrupted file does not belong to
the “important” files being protected, and no recovery action
will be performed. After the recovery is done, the credential
should be completely removed from VM1.

VI. ANALYSIS AND DISCUSSION

A. Security Analysis for RDS3

RDS3 defends against ransomware by periodically back-
ing up data. However, since we cannot predict when ran-
somware is present to corrupt the data, it will be possible
that ransomware will corrupt the data which have not been
backed up. We analyze this security leakage in the following.

Let t1 be the point of time ransomware is present and
starts to encrypt the data, and t2 be the point of time the
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ransomware is detected and blocked. Let t′ be the point of
time before t1 upon the latest back up process is performed.
Recall that T is the time interval for invoking a backup
process. We have two cases:

1) The “important” data created at or before t′ are always
recoverable since they have already been backed up; 2) The
“important data” created between t′ and t2 may be corrupted
by ransomware.

For case 2), we first quantify this vulnerable period (we
call it vulnerable window here). The vulnerable window can
be computed as: t2 − t′. As t′ is the point of time before
t1 when the latest back up process was performed, we have:
t′ + T > t1, i.e., t′ > t1 − T .
Thus, t2 − t′ < t2 − (t1 − T ) = (t2 − t1) + T .
If there exists an effective detector which can detect ran-
somware within T , then t2 − t1 < T .
In this case, t2 − t′ < (t2 − t1) + T < T + T = 2 · T . If
T is chosen as a few minutes, then this vulnerable window
will be also a few minutes. We further understand how
the ransomware will affect the “important” data during the
aforementioned vulnerable window. Let δ be the amount of
“important” data being generated in this vulnerable window,
and G be the total amount of data in the regular volume.
Assume the ransomware can encrypt x bits of data per second,
then:
The amount of data being encrypted by the ransomware is:
(t2 − t1) · x.
As the ransomware has no knowledge of which data are
“important,” it can only corrupt data in a random (uniformly
random) manner. Thus, the amount of “important” data en-
crypted by ransomware will be:
(t2 − t1) · x · δG .
For example, if the detector can detect ransomware in 120
seconds, and ransomware can encrypt 100MB/s; the amount
of “important” data generated during the vulnerable window
is 100MB; the total amount of data in the regular volume
is 500GB, then the amount of “important” data encrypted by
ransomware will be 2.4MB, which is 2.4% of the entire newly
generated “important” data.

B. Discussion

Isolation provided by a virtual machine monitor. RDS3
relies on the isolation provided by a virtual machine monitor
to prevent the ransomware from accessing the backup volume.
Although a few existing works [35, 36] were investigating the
vulnerabilities of virtualization, most of them are focusing
on stealing information from a co-resident virtual machine,
which are more concerned with attacking read operations.
Our objective in RDS3, however, is to prevent the attacker
from writing the co-resident virtual machine, which is more
concerned with write operations.

About the “spare space” assumption. RDS3 relies on the
assumption that the computing device is equipped with a
certain amount of spare space (see Section III), which can
be utilized to create the backup volume. To justify this
assumption in practice, we conducted a survey in our institute.
We selected a group of 104 students, and obtained the storage
usage in their personal computers. The statistical results

Fig. 3: Disk usage statistics in our survey. The bar for “x%
free space” shows the percentage of subjects who have at

least x% free space

are shown in Figure 3. The results show that most of the
computing devices (80%-90%) have more than 20% spare
space. This confirms the practicality of RDS3.

Computing delta. During the back up process, the backup
app needs to compute the difference (i.e., delta) between the
file version stored in the backup volume and that stored in
the regular volume. Rolling checksum [34] can be utilized
to efficiently identify the difference of the two files stored
in different machines. In addition, to reduce the storage cost
for the backup data, we can periodically perform an in-place
reconstruction on the backup volume, to obtain a new starting-
version for each file.

Operation suggestion. To ensure the ransomware will not
hack into the tiny OS for the backup volume, we recommend
the device owner should not enter the tiny OS. By default,
the device should directly boot into the user OS for daily
use. The tiny OS can be activated by the virtual machine
monitor whenever a backup process or data recovery process
is needed.

Mitigating the “marking” attack. Marking a file as “impor-
tant” only relies on the public key, which is also known to
the ransomware who can obtain root privilege. Therefore, the
ransomware may disturb the system by marking all the files
as “important.” We claim this is not a major issue, because:
first, the recovery component of RDS3 is actually a version
control system which uses an incremental backup technique.
The version control system can ensure that no data will be
lost. Second, RDS3 also incorporates a detector component
which can detect and block ransomware within a reasonable
amount of time. Thus, to perform the aforementioned attack,
the ransomware needs to mark a large number of files as
“important” in a short time, and such abnormal behavior can
be easily detected by the detector component running in VM1.

VII. IMPLEMENTATION AND EVALUATION

A. Implementation

We implemented a prototype for RDS3 by tailoring Linux
as the operating system. We implemented various components
in RDS3: initialization, marker generation, back up data, and
data recovery in c. The implementation details are elaborated
below.
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TABLE I: Throughput of RDS3 in VM1 under different
VMMs

Machine SREAD RANREAD SWRITE RANWRITE

no RDS3 53.9MB/s 815KB/s 146MB/s 749KB/s

XEN 31.6MB/s 806KB/s 97.2MB/s 732KB/s

VirtualBox 22.7MB/s 712KB/s 50.9MB/s 756KB/s

Initialization. The asymmetric encryption is instantiated us-
ing RSA with 1024-bit key size, i.e. λ = 1024. The key pair
(pk, sk) is generated using OpenSSL cryptographic library.

Marker generation. Marker generation is performed in VM1.
We use ‘1’ and ‘0’ as the marker to distinguish “important”
and “not important” file, respectively. We concatenate marker,
file ID, and nonce (randomly generated during run time),
and encrypt them using RSA asymmetric encryption. The
resulting cipher is further encoded using base64 encoding2,
generating the corresponding file attribute. The attribute is
further affiliated with the corresponding file by running set-
fattr [9]. By default, when a new file is created, it will be
set with an attribute being computed using marker “0”. The
inotify API is used to monitor the changes of the file system
which can detect a file creation event.

Back up data. We implement a backup app by leveraging
rsync. Periodically, the backup app running in VM2 will read
from the regular volume (over ssh) and decrypt the marker
attributes of all the files using the private key. It then only
backs up those files marked as “important” in an incremental
manner using rsync (over ssh). If a user marks a large number
of files as “important,” there may be insufficient storage
space in the backup volume. Therefore, the backup app also
incorporates quota and notification functionality to inform the
user about the space insufficiency.

Data recovery. We also implement a recovery app which
runs in VM2 and can be used by the victim to restore the
data corrupted by the ransomware, using the data stored in
the backup volume. Those corrupted files can be reconstructed
in VM2 and then pushed back to the regular volume (over
ssh), over-writing their corrupted versions.

B. Experimental Evaluation

We set up a test-bed for our experimental evaluation,
using the following system configurations: Our host ma-
chine was equipped with Intel(R) Xeon(R) CPU X5550 @
2.67GHz, 6GB RAM, and 1.8 TB disk space. Two VMMs
(XEN and VirtualBox) were installed in the host machine
running Ubuntu 16.04.2 LTS. Two virtual machines VM1
and VM2 were created under each VMM, respectively, each
was assigned 1 core CPU, 1GB RAM, and 100GB hard disk
space. We used a benchmarking tool fio [1] to evaluate the
throughput. We compared RDS3 using different VMMs. We
also collected the throughput of the host physical machine
without running RDS3.

2Base64 encoding is used to facilitate storing and transmission of this
attribute.

We evaluated the throughput in terms of sequential read
(i.e., SREAD), random read (i.e., RANREAD), sequential
write (i.e., SWRITE), and random write (i.e., RANWRITE).
The experimental results are shown in Table I. We observed
that the additional overhead introduced by RDS3 varies 41%-
58% for sequential read, and 30%-65% for sequential write.
The additional overhead mainly comes from the virtualization
for isolation and computation required for backing up data.
We did not observe significant additional overhead for random
read and random write. The potential reason is, due to the in-
ternal implementation of virtualization, the random read/write
may be not exactly equivalent to that in a physical machine.
Specifically, the VMM may optimize the random seek issued
from the upper layer. In addition, we observed that RDS3
running in XEN achieved better performance compared to
running in VirtualBox. This actually indicates that XEN is
optimized more in performance compared to VirtualBox.

VIII. RELATED WORK

Ransomware mitigation in PC computers. Kharraz et
al. [26] presented results of a long-term study of ransomware
attacks that have been observed in the wild between 2006
and 2014. They showed how ransomware attacks have been
evolved by analyzing more than 1,300 samples belonging to
15 different categories of ransomware. They also showed that
ransomware can be detected by monitoring the activities in
file systems. In addition, Kharaz et al. [25] created an artificial
user environment and detected ransomware when it tried
to interact with the environment. Another file system-based
ransomware detection was performed in [32]. ShieldFS [21]
created a protective wrapper around the windows operating
system that were immune to Ransomware. It monitors the
low-level file system activity and updates an adaptive model.
Whenever a process violates that model, it marks that pro-
cess as malicious and transparently recovers all the original
files. PayBreak [27] tried to recover the data corrupted by
ransomware by extracting the encryption key. However, such
a solution can only work when the ransomware utilizes
symmetric encryption or hybrid encryption.

Modern techniques such as Software Defined Network-
ing (SDN) were used to detect and mitigate Ransomware
attacks [16, 17]. Other techniques such as honeypot-based
ransomware detection [29] were also explored. Ahmadian
et al. [15] detected the Ransomware by monitoring the
connection between the victims computer and the CC server.

IX. CONCLUSION

In this work, we propose RDS3, a ransomware defense
approach which focuses on restoring the data corrupted by
ransomware. By isolating spare space containing backup
data from the regular volume, and making the spare space
inaccessible for the ransomware, we make it possible to
recover the encrypted data, regardless of what privilege the
ransomware can obtain. Security analysis and experimental
evaluation show that RDS3 is able to mitigate ransomware
attacks with an acceptable performance overhead.
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