
Deduplication-friendly Watermarking for Multimedia Data in
Public Clouds?

Weijing You1, Bo Chen2, Limin Liu3, and Jiwu Jing1

1 School of Computer Science and Technology, University of Chinese Academy of Sciences (UCAS), Beijing, China
2 Department of Computer Science, Michigan Technological University, Michigan, United States

3 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences
(CAS), Beijing, China

Abstract. To store large volumes of cloud data, cloud storage providers (CSPs) use deduplication, by
which if data from multiple owners are identical, only one unique copy will be stored. Deduplication
can achieve significant storage saving, benefiting both CSPs and data owners. However, for ownership
protection, data owners may choose to transform their outsourced multimedia data to “protected for-
mats” (e.g., by watermarking) which disturbs deduplication since identical data may be transformed
differently by different data owners.

In this work, we initiate research of resolving the fundamental conflict between deduplication and
watermarking. We propose DEW, the first secure Deduplication-friEndly Watermarking scheme which
neither requires any interaction among data owners beforehand nor requires any trusted third party.
Our key idea is to introduce novel protocols which can ensure that identical data possessed by different
data owners are watermarked to the same “protected format”. Security analysis and experimental
evaluation justify security and practicality of DEW.

Keywords: Public Clouds, Multimedia Data, Deduplication, Watermarking, Proofs of Ownership

1 Introduction

Nowadays, outsourcing data to public cloud storage providers (CSPs) like Amazon S3 [1], iCloud [2], Microsoft
Azure [3], has become an economical and convenient practice for data owners. A critical issue faced by the
CSPs is how to manage the ever-surge volume of data [4]. This can be mitigated by deduplication [5], which
ensures that when multiple identical copies are present in the CSPs, only one unique copy will be stored,
eliminating unnecessary wasting of storage. According to recent reports [5], deduplication can save up to
87% storage. For multimedia data, deduplication also achieves significant storage saving [6].

Although cloud outsourcing can bring significant benefits to data owners, it also introduces significant
security concerns. One concern is losing ownership of their valuable data. To protect ownership, data own-
ers would choose to transform their data to “protected formats” before outsourcing them. One prevalent
solution is through encryption. This, however, is cumbersome because both sharing and processing of en-
crypted data in clouds will be difficult4. Fortunately, for multimedia data (noise-tolerant signals such as
images/audio/videos), an alternative solution is through digital watermarking [7]. The watermarked data
are directly usable by other users, facilitating data sharing in the clouds with copyright protection.

The watermarking, however, creates significant obstacles for deduplication, because: identical data are
usually transformed to different “formats” by different owners using their unique secrets, which cannot be
deduplicated any more. To resolve this conflict, we initiate investigation of a deduplication-friendly water-
marking design. The core idea of our design is to make sure that different data owners will always transform
identical data to the same “watermarked format”, such that deduplication will not get stuck. The challenge

? This is a full technical report of the paper appeared in ESORICS ’20.
4 Although the homomorphic encryption can be used to process data in public clouds, they are still far from practi-

cality.

is, the data owners usually do not know each other and will not synchronize information (e.g., sharing se-
crets) among them; without information synchronization, it would be difficult for them to generate the same
“watermarked format” for identical data possessed by them individually.

Message-locked encryption (MLE) [8] derives encryption key from message being encrypted, such that
identical messages can always be encrypted into identical ciphertexts. Motivated by MLE, an immediate
solution towards addressing the aforementioned challenge is to perform watermarking using secret derived
by MLE. For identical data possessed by different data owners, the secret being derived will be identical,
leading to identical watermark embedding and hence deduplication will not be disturbed. However, most the
existing MLE instantiations are problematic, since they either rely on impractical assumptions or suffer from
various attacks. The implementation like Dupless [9] requires an additional independent key server which is
fully trusted, but such a trusted third party is rarely found in practice. Some MLE implementations [10,11]
require cloud users to synchronize information initially which is also impractical. The only known MLE
implementation, convergent encryption (CE) [12], does not require the trusted third party and the initial
user synchronization, but is shown to be vulnerable to an offline brute-force attack [13], in which the attacker
can try all possible content of a file since content space for a fixed-size file is limited.

In this work, for the first time, we adapt MLE to our setting by carefully considering both the nature of
watermarking and deduplication. The resulting design, DEW, is the first secure and practical Deduplication-
friEndly Watermarking scheme. Our key insights are threefold: 1) We separate secrecy of a watermark into
two parts: the watermark location (i.e., where the watermark is embedded) and the watermark bit stream
(i.e., the content forming the watermark). CE is used to determine the location only, while the watermark
bit stream is picked secretly by the first data owner, and securely propagated to other data owners during
deduplication. 2) We design a new Proof of Ownership (PoW) scheme specifically for our purpose. Our new
PoW protocol can allow the verifier to verify proofs of PoW without having access to the original file. 3)
We design a novel technique which can securely and efficiently propagate the watermark bit stream to other
data owners via the untrusted cloud server.
Contributions. We summarize our contributions in the following:

We are the first to identify as well as resolve the conflict between deduplication and watermarking. The
resulting design, DEW, is the first deduplication-friendly watermarking scheme without requiring interactions
among data owners or any trusted third parties.

We adapt MLE in the watermarking process to ensure that identical file data are always deduplicable after
watermarking. Additionally, we propose a novel PoW scheme which can allow the cloud server to verify PoW
proofs without having access to the original file.

We analyze security of DEW. Additionally, we implement DEW and experimentally assess its practicality.

2 Background

Deduplication and proofs of ownership. Deduplication aims to eliminate unnecessary storage space by
removing duplicate data among cloud users. Note that it is only interested in removing cross-user duplicates
which are not used for data durability purpose [14–18]. Based on granularity of data being deduplicated, it can
be categorized as file-level [12] (i.e., the entire file will be deduplicated) and block-level deduplication [19] (i.e.
duplicate data will be detected by blocks or chunks). Based on where deduplication is performed, there are
server-side deduplication, in which all files are uploaded and deduplicated by the cloud server transparently
to clients, and client-side deduplication, where each client collaborates with the cloud server to perform
deduplication. Specifically, the first client uploads the file normally; the following client checks if the file
has been stored using a unique checksum of the file. If so, the file will not be uploaded again. Instead, the
cloud server simply accepts the client as an owner of this file. Compared to the server-side deduplication,
the client-side deduplication is more advantageous in saving both storage and bandwidth, and is thus used
broadly in practice (e.g., Dropbox [20]).

However, the client-side deduplication faces a unique attack that, an adversary which obtains the check-
sum of a file (rather than the file itself), can claim ownership of it. Proofs of Ownership (PoW) [21], were
explored to mitigate this attack. A PoW protocol allows the cloud server (i.e., the verifier) to check whether

2

client server

F m F

m

F

metadata of file (m)

1) client

generates

m of F

original file (F)

2) server

stores m

and F

client store server store

(a) Pre-processing and store

F m F

m

F

response

challenge

F m

(b) A Proofs of Ownership (PoWs)

Fig. 1. Client-side deduplication system

a client (i.e., the prover) indeed possesses the entire file. Halevi et al. [21] proposed the first PoW scheme
based on Merkle-tree, where each leaf node in the tree is a hash value of a file block, and each non-leaf node
is hash value of its child nodes. In their scheme (as shown in Figure 1), the verifier is assumed to be fully
trusted, and keeps a small amount of metadata for verification. When a prover comes, the verifier challenges
the prover, and the prover returns a PoW proof. If the proof is validated by the verifier, the prover will
passes the check.

Digital watermarking. Digital watermarking is a kind of marker covertly embedded in a noise-tolerant
signal (e.g. audios, videos, or images), and can be used to identify ownership of such signal (e.g., protecting
authenticity or owners’ copyright). Its core idea is to embed specific digital information in a carrier signal
which is only perceptible under certain conditions. The watermark extraction process is the reverse oper-
ation of watermark embedding. The digital watermarking can be classified in terms of embedding domain
(e.g., spatial/ frequency domain [22]), embedding method (e.g., spread-spectrum/ amplitude modulation/
quantization type), detection method (e.g, plaintext/ blind watermark), robustness (e.g., fragile/ robust
watermark), information capacity (e.g., 1-bit/ n-bit watermark), and so on. In this paper, we choose n-bit
watermarking in the spatial domain using amplitude modulation5.

Message-locked encryption (MLE). Bellare et al. [8] proposed the message-lock encryption (MLE), which
formalizes various cryptographic primitives that can be used to derive keys from messages being encrypted.
By using MLE, different users owning an identical file are able to derive the same encryption key. A typical
MLE scheme is convergent encryption (CE) [12], in which the encryption key is the hash value of the message
being encrypted. Due to the finite content space, CE is vulnerable to an offline brute-force attack [13].

Discrete logarithm problem (DLP). Let G be a finite cyclic group of order q, and g be a generator of
G. Given an element y ∈ G, we want to find an integer x such that gx = y and 0 ≤ x < q − 1. This problem
is computationally intractable, i.e., no algorithm can determine x in polynomial time [23].

5 A spread-spectrum watermark is modestly robust, but has a low information capacity; while a quantization water-
mark suffers from low robustness, though has a high information capacity. We thus choose amplitude modulation
which can achieve a good balance between robustness and information capacity, and is particularly embedded in
the spatial domain.

3

3 System and Adversarial Model

System model. We consider a cloud storage system consisting of three entities: the cloud server (S), the
data owner (O), and the data user (U). S provides storage services and enables client-side deduplication. O
outsources multimedia files to S but wants to retain their ownership, and therefore, O will watermark the
files before outsourcing. Upon outsourcing a file, O will work with S to find out if this file has been stored by
S. For a file which has been stored in S, O will not upload it, and S will simply add O to owner list of the
file. U can use the outsourced files, e.g. viewing a watermarked video/picture. However, U is not supposed
to have access to the original file data due to protection by watermark.

Adversarial model. All data owners are assumed to be fully trusted. Otherwise, they can simply disclose
the original file data, and using watermark to protect the original file will become useless. This assumption is
reasonable, since a rational data owner will care about his/her ownership and has no motivation to disclose
the original file data. We also assume that it is an authentic data owner which initializes upload of the
original file. This assumption is also reasonable, since by uploading an arbitrary file, the adversary will need
to pay for the storage service, and not gain any additional advantage on obtaining original data of any other
files.

Both the cloud server and the data users are not trusted and may misbehave. The cloud server is honest-
but-curious [24], which will honestly store the file, correctly execute all required operations, and timely
respond to data owners/users as promised in the service-level agreement (SLA), but it is curious about the
exact content of the original file, and may try all means to figure it out. The data users may be malicious.
Their malicious behaviors include: removing the watermark to obtain the original file data, becoming owner
of the file by fooling the cloud server, etc. However, we assume the cloud server and the data users will not
collude. Otherwise, the cloud server can simply add the data users to the owner list of a file. This assumption
is consistent with our “honest-but-curious” cloud model, considering that collusion is not an honest behavior.

We do not consider a special attacker, namely, a revoked data owner which still keeps the original file
after being revoked, since this type of revoked data owner can simply use the preserved original file to pass
the PoW check and become a data owner again. But we do consider an attacker which is a revoked data
owner and has deleted the original file locally. Since a major concern of this work is ownership protection,
attacks which are not directly related to ownership compromise are not considered here, like network attacks
(e.g., DDoS), attacks that break robustness of watermarking (e.g., the adversary distorts the watermarked
file arbitrarily).

All the communication channels among the cloud server, the data owner, and the cloud user are assumed
to be secure, e.g., being protected using SSL/TLS.

4 A Deduplication-Friendly Watermarking Scheme

4.1 Design Rationale

To enable a secure deduplication-friendly watermarking design, we separate the watermark into two inde-
pendent components: the watermark location and the watermark content. We handle each component as
follows:

– The watermark location is derived from a secret key, which is generated using convergent encryption
(CE). In this manner, if all the data owners possess an identical file, by applying CE on this file, they
will be able to generate the same secret key, which can be used to derive the same watermark location.

– The watermark content is a random bit stream, which will be picked by the data owner who initially
uploads the file, and will then be propagated secretly to other data owners during the client-side dedu-
plication. In this way, all the data owners of the file can share the same random bit stream. Note that
relying on the CE to derive both the watermark location and the watermark bit stream will be vulnerable
to the offline brute-force attack [13].

4

Especially, in a client-side deduplication system, a data owner initially outsources a watermarked multimedia
file to a cloud server. All the following data owners will check with the cloud server whether the file has
been stored or not, and the cloud server will perform a PoW check on each following data owner; once the
PoW check is passed, the corresponding data owner will be added to owner list of the file, and can delete
the file locally without uploading it again. During each successful PoW process, the random bit stream will
be propagated stealthily to each data owner. Three questions need to be answered further:

– How can each following data owner securely and efficiently find out whether a given file has been stored
in the cloud server?

– How can the cloud server perform the PoW check without having access to the original file?
– How can the random bit stream (i.e., watermark content) be propagated to other data owners securely

and efficiently via the untrusted cloud server?

We answer the first question. In traditional client-side deduplication (in a benign setting where the cloud
server is fully trusted), the data owner can simply send a checksum (typically a hash value) of the original file
to the cloud server before uploading it, using which the cloud server can check whether there is a duplicate
file. However, in an adversarial setting, the checksum should not be computed over either the original file or
the watermarked one. Simply computing a checksum over the original file is not secure, since the honest-but-
curious cloud server may perform the offline brute-force attack by knowing this checksum due to the limit
content space of a file. In addition, simply computing a checksum over the watermarked file is infeasible,
because at this point, the watermarked file has not been generated yet. Fortunately, we observed that in a
watermarked file, the file data excluding the watermark (we call this part of file data “public portion”) are
always known by the cloud server, and the checksum can be derived over the public portion of the file. In
this manner, when performing the offline brute-force attack, the adversary can at most find out the public
portion of the file, rather than the entire original file. In addition, since the watermark location is derived
using CE, any data owners who possess the original file can easily derive the watermark location, exclude
the watermark, and generate the checksum based on the public portion. Since the public portion is only part
of the original file, matching of it does not provide 100% guarantee of matching of the file. In the case that
two different files have the same public portion (the probability should be low), the mismatching will be
detected later when the data owner proves ownership of the file. Therefore, to support existence detection of
a particular file, we need to perform the following: 1) when outsourcing a watermarked file, the data owner
should compute a checksum over its public portion, and upload to the server both the watermarked file and
the checksum; and 2) during client-side deduplication, a data owner who wants to check whether a local file
has been stored by the cloud server or not, will compute a checksum over the public portion of file, and send
the checksum to the cloud server.

We now answer the second question. Suppose the watermarked file has been uploaded to the cloud server
by a data owner (O1) and another data owner (we call this data owner Ol, where 1 < l) comes, who also
possesses the same original file. After having found out the data owner may have a duplicate file (refer to our
answer to the first question), the cloud server will run a PoW protocol to further verify whether Ol really
possesses the original file. In the traditional PoW protocol [21] the cloud server is fully trusted and possesses
the original file, which is different from our setting that the cloud server is assumed to be honest-but-curious
and only stores the watermarked file. Therefore, the traditional PoW protocol cannot work and a new PoW
protocol is designed as: the data owner generates a “miniature” of the original file to assist the cloud server
to run the PoW protocol, under the condition that, the cloud server (i.e., PoW verifier) will not learn the
original file from either the “miniature” or the PoW proofs, and the client (i.e., PoW prover) should not be
able to pass the PoW verification without possessing the original file.

Specifically for security, the “miniature” should satisfy two properties: I) The “miniature” can be used
to correctly verify a PoW proof, i.e., the “miniature” should be unique for the original file, and it is compu-
tationally infeasible to find two different files such that their miniatures are identical. II) The cloud server
should not be able to derive anything else beyond the watermarked file from the “miniature”. To create
such a “miniature”, an immediate solution is to use PoR [25]/PDP [26] tags which support public verifia-
bility. This, however, turns out to be very expensive in tag generation [25,26]. An improvement of efficiency
could be using the PoR tags supporting private verifiability [25] (note that a PDP tag supporting private

5

verifiability is also expensive to be computed [26]). The privately verifiable PoR tag [25] is constructed as
s∑
j=1

αjmij +Fκ(i), where s is the number of symbols in a file block mi (with block index i, and 1 ≤ i ≤ n for

a file with n blocks), Fκ() is a pseudo-random function (PRF) with a key κ. Note that αj (for 1 ≤ j ≤ s)
and κ are random numbers which should be kept private by the verifier. However, the privately verifiable
PoR tag cannot immediately work here, since the verifier (i.e., the untrusted cloud sever here) needs to know
αj (for 1 ≤ j ≤ s) and κ. By knowing αj (for 1 ≤ j ≤ s) and κ, the cloud server may be able to derive the
original file content. To address this security issue, the design is tuned as follows: 1) The tag of each file block

is computed as:
s∑
j=1

αjmij +H(i||Iwm), where H is a cryptographic hash function, and Iwm is the watermark

bit stream of the file. 2) We disclose gαj (for 1 ≤ j ≤ s) rather than αj (for 1 ≤ j ≤ s) to the untrusted
cloud server, such that the cloud server can rely on gαj to check the PoW proofs without knowing αj . 3)
During the PoW process, we require the cloud server to stealthily distribute the watermark bit stream to
the prover. Here “stealthily” means the cloud server is unable to figure out the watermark bit stream. The
prover, if possesses the original file, will be able to extract the watermark bit stream Iwm, and to compute
assisting information based on the Iwm together with its PoW proofs. This makes it possible that even if the
verifier (i.e., the cloud server) does not know Iwm, it can still be able to check the PoW proofs returned by
provers.

In addition, during each PoW process, the cloud server checks a random subset of file blocks from the
original file (for a small file, the cloud server can simply check all the file blocks); the prover will return PoW
proofs derived from file blocks being checked. A possible security issue here is that, the cloud server may
learn sensitive information about the original file from the PoW proofs. Our solution is that, each time before
returning a PoW proof, the prover will mask the proof with randomness; also, to facilitate the verification of
the PoW proofs, assisting information relating to the randomness will be returned (can be combined together
with the assisting information for Iwm mentioned above).

Here comes to the third question. Having observed that the watermark can be extracted through com-
paring the original file with the watermarked file, a straightforward solution is, the cloud server directly
sends the watermarked file to the data owner during each PoW process. This solution suffers from a large
communication overhead and, is insecure, since it discloses too much effective information of the original
file to the prover before PoW checking. Having observed that, the watermark bit stream usually distributes
sparsely in the watermarked file, we propose a novel approach to “compress” the watermarked file such that:
1) the size of the compressed watermarked file can be reduced significantly from O(n) to O(

√
n), where n is

the file size; and 2) without possessing the original file, one cannot extract the watermark bit stream from the
compressed watermarked file (i.e., only a party which possesses the original file can extract the watermark
bit stream). As a grayscale image6 can be processed as a 2-dimension N ×N pixel matrix, the key idea is to
compress the matrix to a d×N row matrix and an N × d column matrix, where d is a compression param-
eter and d � N . The compression is performed in such a way that, compared to the original pixel matrix,
the compressed matrices lose effective information significantly and are useless when used independently.
Note that this special “compression” is completely different from the traditional compression which requires
decompression, and therefore, it is also effective for image files in compressed format (e.g. jpeg).

4.2 Design Details

Our Deduplication-friEndly Watermarking scheme (DEW) consists of 5 phases: Setup, Initial Upload, Client-
side Deduplication, Retrieval, and Restoration. For simple presentation, we assume there is only one file in the
cloud server, which can be easily extended to a regular cloud storage system with multiple files. In addition,
we focus on grayscale images which are commonly stored with 8 bits per sampled pixel.
Setup: Let β be a security parameter. The system selects a finite field Zq of a prime order q, and initializes
a multiplicative cyclic group G of the same order, and let g ∈ G be a generator. The system also selects
three cryptographic hash functions, defined as H1, H2, and H3 respectively: {0, 1}∗ → {0, 1}β . There is also a

6 For simplicity, we focus on grayscale images in this paper.

6

Initial Upload
The data owner O1: The cloud server S:

1. Compute checksumf :
KCE ← H2(f)

- Extract fp from f
based on KCE

- checksumf ← H1(fp)
checksumf−−−−−−−→

2. Check checksumf → ×
×←−

3. Watermarking original file f :
- Generate bit stream Iwm
- Derive ft based on f, Iwm, w, KCE

4. Generate PoW tags:
- Split f into n blocks,

each block has s symbols
- Select s random numbers
αj ∈ Zq

- Compute PoW tags:
For 1 ≤ i ≤ n:

σi ←
s∑
j=1

αjmij +H3(i||Iwm)

- Compute gαj , where 1 ≤ j ≤ s
ft,{σi},{g

αj }−−−−−−−−−→
5. Store KCE and Iwm 5. Store checksumf , ft,

{σi} and {gαj}
(a) Initial Upload phase

Client-side Deduplication
The data owner Ol (1 < l) : The cloud server S:

Check checksumf → X:
- Generate challenge Q← {(i, vi)}

- Compress ft into Mtr and Mtc

Q,{gαj },Mtr,Mtc←−−−−−−−−−−−−
2. Extract watermark bit stream:

- KCE ← H2(f)
- Compress f into Mor and Moc

- Extract Iwm
Store KCE, Iwm locally

3. Generate the PoW proof:
- Split f into n blocks,

and each block has s symbols
- Select s random numbers
xj ∈ Zq, where 1 ≤ j ≤ s

- For 1 ≤ j ≤ s :
µj ←

∑
(i,vi)∈Q

vimij + xj

- tail← g

∑
(i,vi)∈Q

viH3(i||Iwm)

· (
s∏
j=1

gαjxj)−1

{µj},tail−−−−−−→
4. Verify the PoW proof:

- σ ←
∑

(i,vi)∈Q
viσi

- X/× ← tail ·
s∏
j=1

(gαj)µj
?
= gσ

(b) Client-side Deduplication phase

Fig. 2. Detailed steps in the Initial Upload and Client-side Deduplication phase

pseudo-random permutation π: {0, 1}β×{0, 1}logn2 → {0, 1}logn2 , where n is file size in bytes. The compression
parameter d for determining the size of compressed matrix is set to be a positive integer significantly less
than n, i.e., d� n, and the watermark length is set as w, which usually is much smaller than n.
Initial Upload : In this phase, the data owner (O1) processes the original file (f) into a deduplicable water-
marked file (ft), generates PoW tags for f , and stores PoW tags together with ft to the cloud server (S)
(Figure 2(a)):

Step 1: O1 runs KCE ← H2(f) to derive a CE key from f . KCE is used to derive the public portion, denoted
as fp. O1 then computes a checksum (i.e. checksumf) for f by running checksumf ← H1(fp). Lastly, O1

sends a request with checksumf to S indicating that he/she wants to upload f .
Step 2: S checks existence of f using checksumf . If f has been stored, the Initial Upload phase will end,

and Client-side Deduplication phase will be be invoked. Otherwise (denoted as ×), proceed to next Step 3.
Step 3: O1 generates a random bit stream (Iwm) with length w and uses Algorithm 1 (input: f , Iwm, w,

KCE) to generate a watermarked file ft.
Step 4: O1 splits f into n blocks and each block contains s symbols in Zq. Each symbol is denoted as mij ,

where 1 ≤ i ≤ n and 1 ≤ j ≤ s. Then O1 selects s random numbers αj ∈ Zq and computes gαj , for 1 ≤ j ≤ s.

The PoW tag for each file block i is computed as σi =
s∑
j=1

αjmij +H3(i||Iwm), for 1 ≤ i ≤ n.

Step 5: ft is outsourced to S along with {gαj |1 ≤ j ≤ s} and {σi|1 ≤ i ≤ n}. Then O1 deletes f and stores
KCE and Iwm locally.

Client-side Deduplication: If f has been stored by the cloud server, when a following data owner (Ol, where
1 < l) sends the checksum (i.e., checksumf), the cloud server will find a match. Then, the cloud server will
ask Ol to prove ownership of f . The detailed steps (Figure 2(b)) are elaborated as follows:

Step 1: S generates a PoW challenge Q = {(i, vi)|1 ≤ i ≤ c}, where i denotes a randomly selected block
index, vi denotes a random number picked from Zq, and c is the number of file blocks being challenged. S
further compresses ft using Algorithm 2 (input: ft and d), generating a compressed row matrix Mtr and a
compressed column matrix Mtc. S sends Q, Mtr, Mtc, {gαj |1 ≤ j ≤ s} to Ol.

Step 2: Ol extracts Iwm: 1) Ol computes KCE from f by running KCE ← H2(f). 2) Ol compresses the
original file f following the Algorithm 2 (input: f and d), obtaining a compressed row matrix Mor and a

7

Algorithm 1: Watermarking an image file (for grayscale images)

Input: An image file f , Iwm, watermark length w, KCE

Output: A watermarked image file ft
View the file f as an N ×N pixel matrix M
for i = 1 : w do

t = πKCE(i);// Derive watermark locations

L[i] = ((t− 1)/N + 1, (t− 1) mod N + 1);// Derive watermark index

k=1;
for i = 1 : N do

for j = 1 : N do
if L[k] == (i, j) then

M [i, j] = (M [i, j] + Iwm[k])(mod 256);// embed a watermark bit

++k;

The new matrix M will be output as a watermarked image file ft.

compressed column matrix Moc. 3) Ol runs Algorithm 3 (input: f , Mor and Moc, Mtr and Mtc, d, w, KCE)
to obtain Iwm. KCE and Iwm will be stored locally.

Step 3: Ol generates the PoW proof according to Q: 1) Ol divides the file f into n blocks, and each block
contains s symbols. Each symbol is mij where 1 ≤ i ≤ n and 1 ≤ j ≤ s. 2) Ol selects s random numbers
xj from Zq, where 1 ≤ j ≤ s and computes: µj =

∑
(i,vi)∈Q

vimij + xj , for 1 ≤ j ≤ s. 3) Ol computes

tail = g

∑
(i,vi)∈Q

viH3(i||Iwm)

(
s∏
j=1

gαjxj)−1. Ol replies to S with the PoW proof: {µj |1 ≤ j ≤ s}, tail.

Step 4: After having received the PoW proof, S validates its correctness: 1) S computes σ =
∑

(i,vi)∈Q
viσi,

and then computes gσ. 2) S checks whether or not equation gσ = tail ·
s∏
j=1

(gαj)µj holds.

Algorithm 2: Compressing an image file (for grayscale images; Mr[i, :] denotes all the N elements
in row i of matrix Mr; Mc[:, i] denotes all the N elements in column i of matrix Mc)

Input: An image file f , compression parameter d
Output: A compressed row matrix Mr, and a compressed column matrix Mc

View the file f as an N ×N pixel matrix M
for i = 1 : d do

Mr[i, :] = 0;
Mc[:, i] = 0;
for j = 0 : N

d
− 1 do

Mr[i, :] = (M [i+ d× j, :] +Mr[i, :])(mod 256);// aggregated by row

Mc[:, i] = (M [:, i+ d× j] +Mc[:, i])(mod 256);// aggregated by column

Retrieval : All valid data owners and data users are able to retrieve the ft from the cloud server. Upon
receiving a retrieval request, the cloud server authenticates the request (not the focus of this paper), and
sends back ft.

Restoration: Only data owners (Ol, where 1 ≤ l) are able to restore f from ft, which is an inverse operation
of the watermark embedding process in the Initial Upload phase. Specifically, Ol downloads ft from the
cloud server and removes Iwm from watermark locations determined by KCE to restore f .

8

Algorithm 3: Extracting watermark bit stream Iwm
Input: The original file f , Mor, Moc, Mtr, Mtc, d, w, KCE

Output: The extracted watermark bit stream Iwm
Initiate an N ×N matrices M1, and L← ∅;
for i = 1 : w do

t = πKCE(i);
L = L ∪ {(t− 1)/N + 1, (t− 1) mod N + 1)};

for i = 1 : N do
for j = 1 : N do

if (i, j) ∈ L then M1[i, j] = 2;// set 2 for watermark locations

else
M1[i, j] = 3;// set 3 for other locations

for i = 1 : d do
for j = 1 : N do

Mr[i, j] = (Mtr[i, j]−Mor[i, j])(mod 256);
Mc[j, i] = (Mtc[j, i]−Moc[j, i])(mod 256);

for i = 1 : d do
for j = 1 : N do

t = 0;
for k = 0 : N

d
− 1 do

if(M1[k × d+ i, j] == 2) then + + t;

if t == 0 then continue;
if Mr[i, j] == 0 then

for k = 0 : N
d
− 1 do

if M1[k × d+ i, j] == 2 then M1[k × d+ i, j] = 0;

else if Mr[i, j] == t then
for k = 0 : N

d
− 1 do

if M1[k × d+ i, j] == 2 then
M1[k × d+ i, j] = 1;
Mc[k × d+ i, (j − 1) mod d+ 1]− = 1;

for i = 1 : N do
for j = 1 : d do

t = 0;
for k = 0 : N

d
− 1 do

if (M1[i, k × d+ j] == 2) then + + t;

if t == 0 then continue;
if Mc[i, j] == 0 then

for k = 0 : N
d
− 1 do

if M1[i, k × d+ j] == 2 then M1[i, k × d+ j] = 0;

else if Mc[i, j] == t then
for k = 0 : N

d
− 1 do

if M1[i, k × d+ j] == 2 then M1[i, k × d+ j] = 1;

For remaining elements with value 2 in M1, retrieve corresponding elements from ft, determine them by
comparing with f . Sequentially output elements with value 0 and 1 from matrix M1 as Iwm.

9

5 Analysis and Discussion

5.1 Security Analysis

DEW aims to protect ownership of the outsourced multimedia files in a client-side deduplication-enabled
cloud storage system, which implies: 1) any untrusted party, both the honest-but-curious cloud server and
the malicious data users, should not obtain the original file; and 2) any party which does not possess the
original file should not be able to pass the PoW check. Security of DEW is captured in Theorem 1, 2 and 3.

Theorem 1. The cloud server cannot obtain the original file.

Proof. (sketch) The could server can have access to: 1) the watermarked file (ft), and 2) the checksum of
the file (checksumf), and 3) the PoW tags, gαj , as well as the PoW proofs, and 4) some of the watermark
locations during the process of extracting watermark bit stream in Algorithm 3. In the following, we analyze
the cloud server could not obtain the original file based on the aforementioned information:
1. By having access to ft, the cloud server cannot obtain the original file by removing the watermark directly.
Without any additional knowledge, the only strategy for the cloud server to obtain the original file is either
brute-force guessing the original file directly or conducting a removal attack in which brute-force guessing
the watermark location (denoted as event X) and content (denoted as event Y) simultaneously. However,
possessing nothing other than ft the cloud server cannot determine the correctness of brute-force guessing,
which means restoring the original file from the watermarked file directly is infeasible.
2. By additionally having the checksumf , which implies the knowledge of watermark location, the cloud
server could not obtain the original file. Recall that, the watermark is determined by two independent
factors, i.e., the watermark location and the watermark content. Only when exact watermark content is
removed from exact location can the watermarked file be restored to the original file correctly. Based on
checksumf and ft, the strategy for the cloud server to restore the original file is still brute-force guessing,
but checksumf can help the cloud server to determine if the guessed watermark location is correct. Let event
A2 denotes one successful removal attack when given checksumf , the probability of which is multiplication of
probability of X and Y as the two events are independent. Suppose c0, l0 be total number of elements in the
image matrix and the length of watermark bit stream (l0 ≤ c0), respectively. The probability of identifying
watermark location then is P (X) = 1

(c0l0)
, and the probability of event Y is: P (Y) = 1

2l0
. Therefore, the

probability of A2 is:

P (A2) = P (X
⋂
Y) = P (X)× P (Y) =

1

2l0
× 1(

c0
l0

) < 1

2l0
.

It is clearly that when l0 is large enough, the probability of the removal attack is negligible even when
checksumf is disclosed to the cloud server.
3. We show that by having access to the PoW tags and gαj only, the cloud server cannot obtain the original

file. Assume the file has n blocks, and n PoW tags. Each tag is computed as: σi =
s∑
j=1

αjmij +H3(i||Iwm),

for 1 ≤ i ≤ n. The goal of the cloud server is to identify the value of those symbols (i.e., mij) which are
covered by watermark bit stream. Let σk be a tag of a file block which contains at least one symbol covered

by the watermark bit stream. Although the cloud server can have access to σk (computed as
s∑
j=1

αjmkj +

H3(k||Iwm)), it cannot have access to H3(k||Iwm), i.e.,
s∑
j=1

αjmkj will remain unknown by the cloud server.

Also, knowing other tags except σk will not help, since mkj will not appear in other blocks. Therefore, to
identify mkj , the cloud server can only perform brute-force guessing, with a successful probability at most 1

q ,

which is negligibly small since q is a large prime number (e.g., for 160-bit security, 1
q will be approximately

2−160).
We next show that, by accumulating the PoW proofs, the cloud server still cannot obtain the original

file. Note that: 1) The cloud server is assumed to be honest but curious (Sec. 3), and will strictly follow the

10

protocol during the PoW, e.g., issuing a challenge which selects a random subset of file blocks with a new
set of random coefficients during each PoW execution. 2) During each PoW execution, the prover (note that
the prover will not collude with the verifier) will mask each µj (where 1 ≤ j ≤ s) with a newly generated
random number. 3) Only when the PoW protocol is successful, the accumulated PoW proof may help (i.e.,
the data owner which gets involved into the PoW actually possesses the original file). After each successful
PoW execution, the cloud server will accumulate a new PoW proof µ1, µ2, ..., µs as well as tail. Note that
if the blocks being challenged during the aforementioned PoW execution contains any symbols which are
covered by the watermark bit stream, the corresponding proof may help. But we show in the following that
accumulating such a proof gives the cloud server negligible advantages. The detailed proof obtained upon a
successful PoW execution is:

µ1 ←
∑

(i,vi)∈Q
vimi1 + x1

µ2 ←
∑

(i,vi)∈Q
vimi2 + x2

...

µs ←
∑

(i,vi)∈Q
vimis + xs

tail← g

∑
(i,vi)∈Q

viH3(i||Iwm)

· (
s∏
j=1

gαjxj)−1

Each µj (1 ≤ j ≤ s) is masked by an independent unknown random number xj , therefore, the set of
{µj |1 ≤ j ≤ s} alone does not bring any advantage for computing mij where (i, vi) ∈ Q and 1 ≤ j ≤ s. The
only hope is to take advantage of tail. But due to hardness of DLP (Sec. 2), the only option for the cloud
server is to guess {xj |1 ≤ j ≤ s}, and to rely on the tail value to verify correctness of each guessing. Clearly,
the probability for a successful guessing will be approximately 1

qs , which is negligibly small for a large prime
number q. In other words, the extra advantage brought by the aforementioned PoW proof is an additional
guessing with a negligible successful rate (informally).

4. By obtaining the watermark locations (or some of the watermark locations) during the watermark bit
stream extraction (Algorithm 3), the cloud server is not able to obtain the original file since the watermark
bit stream still remains unknown (see aforementioned proof for point 2).

Theorem 2. The malicious data user cannot obtain the original file.

Proof. (sketch) We do not consider a special data user which is a revoked data owner but still keeps the
original file after being revoked (Sec. 3). Therefore, there are two types of malicious data users: 1) The
malicious data user obtains the watermarked file ft, and tries to learn the original file. This has been shown
infeasible in the proof of Theorem 1. 2) The malicious data user gets involved into the PoW process by
successfully guessing the checksumf even though he/she does not possess the original file. This type of
malicious data users will not be able to obtain more information than the cloud server. Having Mtr and Mtc

cannot be even equivalent to having the watermarked file (ft), and all the other information the malicious
data user can have access to is also accessible to the cloud server. According to Theorem 1, the cloud server
cannot obtain the original file, and definitely, the malicious data user cannot obtain the original file either.

Theorem 3. Any parties which do not possess the original file cannot pass the PoW check.

Proof. (sketch) In the following, we first prove the correctness of the verification process. We then show that
using spot checking (i.e., checking a random subset of the entire file rather than the entire file) can verify
whether the prover actually possesses the entire file with a high probability. Lastly, we show that a successful
PoW verification ensures that the prover possesses the blocks being challenged.

11

1. The correctness of the verification process is proved below:

gσ = g

∑
(i,vi∈Q)

viσi

= g

∑
(i,vi∈Q)

vi(
s∑
j=1

αjmij+H3(i||Iwm))

= g

s∑
j=1

∑
(i,vi∈Q)

αj(vimij)+
∑

(i,vi∈Q)

viH3(i||Iwm)

= g

s∑
j=1

αj(µj−xj)+
∑

(i,vi∈Q)

viH3(i||Iwm)

= g

∑
(i,vi)∈Q

viH3(i||Iwm)

(g

s∑
j=1

αjxj
)−1 · g

s∑
j=1

αjµj

= g

∑
(i,vi)∈Q

viH3(i||Iwm)

(

s∏
j=1

gαjxj)−1 ·
s∏
j=1

gαjµj

= tail ·
s∏
j=1

(gαj)µj

2. For small files, the verifier simply checks all the file blocks, and can definitely find out if the original file
is not possessed by the prover. For large files, for efficiency consideration, the verifier only checks a random
subset of file blocks among the entire file. We show in the following that, in this way, the verifier can still
detect it if the prover does not possess the entire original file, with a high probability. The special case that
the prover possesses the watermarked file is equivalent to the case the a portion of the original file is missing.
According to PDP [26], by randomly checking c out of n file blocks, if a malicious prover is missing t blocks,
the verifier can detect it with a probability at least 1− (n−tn)c. For example, if t = 0.01n, when c = 460, the
probability is 99%. For a large enough c, (n−tn)c → 0, and P → 1.
3. During the PoW verification, σ remains unknown to the prover, and hence gσ is also unknown. If the
prover is missing one block being challenged, it needs to guess this block when computing the PoW proof
µ1, µ2, ..., µs, tail. Without knowing gσ, the prover can only brute-force this missing block, and compute
the PoW proof based on this guessed block. The probability that this PoW proof can pass the PoW check
successfully is 1

q , which is negligibly small for a large prime q. In other words, without having possessed all
the challenged blocks, the prover is not able to pass the PoW check.

5.2 Discussion

Regarding watermark extraction. During the Client-side Deduplication phase, to ensure watermark bit
stream can be extracted from the compressed row and column matrix (i.e., Mtr and Mtc) sent by the cloud
server, Ol may need to retrieve additional elements from the watermarked file ft, if some of the elements in
the watermarked locations cannot be determined (Algorithm 3). The number of additional elements needed
to be retrieved is usually much smaller than the size of watermark bit stream according to our experimental
evaluation (value r in Table 1), which only introduces a small extra communication overhead. In addition,
this may disclose some of the watermark locations to the cloud server, but it will not help the cloud server
to learn the original file, because only a small portion of watermark locations may be disclosed and most
importantly, the watermark bit stream remains unknown to the cloud server. Note that to ensure Algorithm 3
can work correctly, Nd should not reach 256 (i.e., to ensure that after aggregating all the potential watermark
bits in a row/column, it will not be greater than or equal to 256, causing overflow).
Revoking data owners. A data owner may be revoked over time, e.g., after the owner deletes a multimedia
file, he/she will be revoked. To prevent a revoked owner from restoring the file in the future by simply keeping
the watermark (small in size), we should re-watermark the file so that after re-watermarking process is done,
the revoked data owner will not be able to obtain the original file again by retrieving a watermarked file
and subtracting the kept watermark. The re-watermarking process is usually triggered upon an owner is

12

revoked. In the case that a file is shared by many owners which are revoked frequently, we may delay
the re-watermarking process so that each such process will handle multiple revoked owners. After the re-
watermarking process, the watermark bit stream may have been changed, and should be re-propagated to
valid owners7.
Side-channel attack resistance. Traditional client-side deduplication is susceptible to a side-channel
attack [27], where the checksum can be used to identify existence of a given file, and hence to learn file
content. DEW can mitigate this attack since the checksum is computed from “public portion” of a file, i.e.
the adversary cannot identify a file exactly, and at most learn “public portion” of the file.
Applications of DEW in practice. DEW can be applied to a lot of real-world scenarios. For example,
crowd-funding projects become popular nowadays, in which different users may collaborate for one project
and produce multimedia files, which are later outsourced to clouds by individual users using watermarking for
ownership protection. Due to COVID-19, online teaching becomes more and more prevalent, and individual
teachers may store multimedia files (purchased from the same publisher) to clouds, using watermarking for
ownership protection.
Limitations of DEW. The design of DEW has a few limitations: First, due to complication of multimedia
data, we currently initiate DEW using an n-bit additive modulation watermarking scheme in a spatial domain
with modest robustness, which is sufficient regarding ownership protection. However, other watermarking
schemes, e.g., watermarking in frequency domain and quantization-based watermarking, may be supported
by DEW, by slightly tuning the design to accommodate different types of watermarking process. This will
be further investigated in our future work. Second, the current design of DEW uses the grayscale images.
However, DEW can be extended to other multimedia data. For example, 1) for a colored image (i.e. RGB
image), it can be decomposed to three single-channel images, each can be processed like a grayscale image;
2) for a video file, it can be viewed as a collection of still images (either colored images or grayscale images).

6 Implementation and Evaluation

Both the cloud server and the client were run on a local machine (Intel Xeon E3-1225 v5 CPU 3.30GHz, 8.0
GB RAM, and Ubuntu 16.04 with kernel version 4.15.0-50-generic). The security parameter β was selected
as 160. We worked on the type A pairings which are constructed on the curve y2 = x3 +x [28] over the finite
field Zq. The order (i.e., q) of the finite field Zq and the cyclic group G is a 160-bit prime8. We used the
pairing-based cryptographic library PBC-0.5.14 [28]. The hash function H1, H2 and H3 were instantiated
using SHA1, and the pseudo-random permutation π was implemented using randomperm() in MATLAB-
R2016a. d was selected as 8, and N were 128, 256, 512, 1024, and 2048, respectively. Note that N = 2048 is a
corner case for satisfying the condition that N

d < 256 (Sec. 5.2), and we ensured that no overflow happened
during the experiments. When the number of blocks in a file is less than or equal to 460, the cloud server
will run the PoW protocol by checking the entire file; otherwise, the number of blocks being checked is 460,
which can ensure that if 1% of the file has been corrupted, the server will detect the corruption with 99%
probability [26]. We used 1000+ images for testing, the sizes of which range from 16KB to 10MB, under
three test cases with different sizes of each file block and single symbol in a file block. Images were processed
using MATLAB scripting language.
Evaluating the Initial Upload phase. In this phase, the data owner will generate the watermarked file,
and compute PoW tags (from the original file) as well as {gαj |1 ≤ j ≤ s} for PoW verification.
Watermarking. The watermarking computation is shown in Figure 3(a). We can observe that the watermark-
ing computation is mainly determined by the watermark length rather than the file size. This is because,
the major computation during watermarking is adding watermark bits to specific elements selected by the
KCE, which depends on the length of the watermark bit stream.

7 Using the old watermarked file as well as the old watermark, a valid owner can restore the original file, and by
retrieving a compressed version of the new watermarked file, the owner is able to extract the new watermark bit
stream. We will investigate a more efficient design in the future work.

8 To ensure that each symbol is valid (i.e., not larger than the finite field), only 159 bits from a file were read each
time.

13

1000 2000 3000 4000
0.0006

0.0008

0.0010

0.0012

0.0014

Ti
m

e
fo

r w
at

er
m

ar
ki

ng
 (s

ec
on

d)

Length of watermark (bit)

 128x128
 256x256
 512x512
 1024x1024
 2048x2048

(a) Watermarking

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Ti
m

e
fo

r t
ag

gi
ng

 (s
ec

on
d)

Size of file (MB)

 a=4096 b=20
 a=2048 b=10
 a=2048 b=20

(b) PoW tags generation

0 2 4 6 8 10
0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

Ti
m

e
fo

r c
om

pu
tin

g
g

j (
se

co
nd

)

Size of file (MB)

 a=4096 b=20
 a=2048 b=10
 a=2048 b=20

(c) Computing {gαj}
Fig. 3. Computational cost of various components in Initial Upload phase

Preparing for the PoW. The computational cost for generating PoW tags and computing {gαj |1 ≤ j ≤ s} is
shown in Figure 3(b) and 3(c), respectively. Let a denotes the block size (in bytes) and b denotes the symbol
size (in bytes). We can observe that: 1) for fixed block/symbol size, the computational cost for generating
PoW tags increases linearly with the file size and decreases with the symbol size, while is independent to size
of each file block. This is because, this cost is mainly determined by total numbers of symbol-wise operations,

the computational complexity of which approximates O(|F |b), i.e., determined mainly by the file size |F | and
the symbol size b; 2) for fixed block/symbol size, the time for computing {gαj |1 ≤ j ≤ s} is independent to
the file size. This is because, it is mainly determined by s = a

b rather than the file size. This also explains
that, for fixed symbol size, if the block size is doubled, the computation time is also doubled; in addition,
for fixed block size, if the symbol size is doubled, the computation time is approximately reduced by 50%.

Evaluating the Client-side Deduplication phase. In this phase, the data owner will compute the PoW
proof, and the cloud server will validate correctness of the PoW proof. Besides, the watermark bit stream
will be distributed to the data owner during the PoW process, which requires the cloud server to compress
the watermarked file and the data owner to extract the watermark bit stream.

PoW proof generation. During the PoW process, the data owner will compute the PoW proof based on
the cloud server’s challenge and the compressed watermarked file. The computational cost for PoW proof
generation is shown in Figure 4(a). We have following observations: 1) The computational cost for PoW
proof generation increases linearly with the file size before reaching a certain threshold. This is because, the

14

cloud server will check all the file blocks when the file size is small (i.e., when the total number of file blocks
is smaller than 460), and the number of file blocks being checked depends on the file size for fixed block size;
if the file size exceeds the threshold, it will always check 460 file blocks, and therefore, the computational
cost turns constant. 2) After reaching the threshold, for a fixed symbol size, the computational cost for
PoW proof generation will grow if the block size grows; for a fixed block size, this computational cost will
grow if the symbol size decreases. The reason is, when the number of blocks being challenged is fixed, the
computation for proof generation is mainly associated to s = a

b , where a is the block size and b is the symbol
size.
PoW proof verification. After having received the PoW proof, the cloud server will verify its correctness and
the computational cost is shown in Figure 4(b). We can observe that: 1) for fixed block size and symbol size,
the computational cost of verifying the proof is constant regardless of the file size; 2) for fixed symbol size,
this cost will increase if the block size increases; 3) for fixed block size, this cost will increase if the symbol
size decreases. The reason is similar to the aforementioned proof generation.
Distributing the watermark bit stream stealthily during PoW. In the PoW process, the cloud server will send
two compressed matrices of the watermarked file to the data owner, and the data owner will extract the
random watermark bit stream. The computational cost of compression and extracting watermark bit stream
are shown in Figure 4(c) and 4(d), respectively. We have following observations: 1) The compression time
mainly depends on the file size, rather than the watermark length. This is because, the compression will
iteratively add each d rows/columns of the image matrix together, which is determined by the size of
the matrix, hence the size of the file. 2) When the file size is fixed, the computational cost of extracting
watermark approximately grows linearly with the watermark length, which is the total amount of extracting
operations; in addition, for fixed the watermark length, the computational cost grows with the file size, since
the extracting process requires traversing the entire file.

We also assess effectiveness of our compression approach by calculating the compression rate ρ =
N2−(2×d×N+r)

N2 × 100% , where N2 is the total number of elements in the original matrix, d × N is the
number of elements in a compressed row/column matrix, and r is the number of elements which are sent
additionally when uncertainty happen. The experiment was performed over files with different sizes (ranging
from 128×128 to 2048×2048 in pixel) and different watermark lengths (ranging from 100 bits to 2,000 bits).
The results are shown in Table 1, each is averaged over 100 runs. We can observe that, ρ is at least 84.42%,
which justifies effectiveness of our compression approach. Additionally, ρ increases with file size but decreases
with watermark length. This is because: 1) for fixed watermark length, the larger file means more space to
be embedded with watermark bit stream, leading to the more sparsely distributed watermark bits, hence
less uncertainties occur during watermark extraction, i.e., r will be smaller; 2) for fixed file size, a shorter
watermark bit stream leads to the more sparsely distributed watermark bits, and hence less uncertainties
happen during watermark extraction, resulting in smaller r.

Table 1. Data compression rate. Each table cell shows ρ together with r in bracket.

File size (in pixel) The length of watermark (bits)
100 500 1000 2000

128× 128 87.5%(0.1) 87.36%(23.3) 86.73%(125.7) 84.42%(505)

256× 256 93.75%(0.1) 93.73%(8.3) 93.67%(52.4) 93.34%(268.2)

512× 512 96.88%(0.1) 96.87%(2.7) 96.86%(17.8) 96.83%(104.7)

1024× 1024 98.43%(0) 98.43%(0.9) 98.42%(7.9) 98.41%(32.4)

2048× 2048 99.22%(0) 99.22%(0.2) 99.21%(2.5) 99.21%(9.5)

7 Related Work

Deduplication on encrypted data. To ensure the encrypted data remains deduplicable, a viable solution
would be allowing each data owner generates the same encryption key for identical data. Douceur et al. [12]

15

0 2000 4000 6000 8000 10000

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Ti
m

e
fo

r g
en

er
at

in
g

th
e

Po
W

 p
ro

of
 (s

ec
on

d)

Size of File (KB)

 a=4096 b=20
 a=2048 b=10
 a=2048 b=20

(a) PoW proof generation

0 2 4 6 8 10
0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

Ti
m

e
of

 v
er

fic
at

io
n

(s
ec

on
d)

Size of file (MB)

 a=4096 b=20
 a=2048 b=10
 a=2048 b=20

(b) PoW proof verification

500 1000 1500 2000
0.0

0.1

0.2

0.3

0.4

0.5

Ti
m

e
fo

r c
om

pr
es

sio
n

(s
ec

on
d)

Length of watermark (bit)

 128x128
 256x256
 512x512
 1024x1024
 2048x2048

(c) File compression

500 1000 1500 2000
0.00

0.02

0.04

0.06

0.08

Ti
m

e
fo

r w
at

er
m

ar
k

ex
tra

ct
io

n
(s

ec
on

d)

Length of watermark (bit)

 128x128
 256x256
 512x512
 1024x1024
 2048x2048

(d) Watermark extraction

Fig. 4. Computational cost of various components in Client-side Deduplication

proposed convergent encryption (CE), in which the data owner derives the encryption key from the hash
value of the message being encrypted. CE, however, suffers from the offline brute-force attack. To mitigate
this attack, Bellare et al. proposed DupLESS [9], in which they introduced a trusted key server to further sign
the CE key using its private key to enhance randomness of the CE key, and limited the number of requests for
keys in a fixed time interval. Bellare et al. [8] formalized encryption schemes to a new cryptographic primitive,
called Message-Locked Encryption (MLE) and presented complete security analysis. Liu et al. [11] removed
the the trusted key server by utilizing password-based authenticated key exchange protocol. Li et al. [29] and
Lei et al. [24] further addressed the re-encryption problem for secure server-side deduplication and client-
side deduplication, respectively. Once the encryption key is leaked, the encrypted data in a deduplication-
based storage system will need to re-encrypted, but a challenge is how to re-encrypt the data efficiently.
Using various techniques like all-or-nothing (AONT) transform [29] and delegated re-encryption [24], the
re-encryption efficiency can be improved.
Proofs of ownership (PoWs) and cloud storage security. A PoW [21] protocol is a vital component
for a secure client-side deduplication system, which can prevent an adversary from claiming ownership over
a file without really possessing it. The first PoW scheme is based on Merkle-tree [21]. Pietro et al. [30]
introduced a more efficient and secure PoW design, by asking the cloud server to pre-compute responses for
a number of pre-computed PoW challenges. The two schemes assume the cloud server is fully trusted, but
the client is untrusted. In parallel with PoWs, another direction of cloud storage security is to allow a client
to verify whether the cloud server honestly stores the outsourced data, in which the client is the verifier
while the cloud server is the prover. Typical protocols includes Provable Data Possession (PDP) [26, 31, 32]

16

and Proofs of Retrievability (PoR) [33]. In this line of research, the client is assumed to be trusted while
the server is untrusted, and new challenges include, the client is usually equipped with limited computation
and storage resources, and hence needs to remain lightweight (e.g., the protocol should only require constant
client storage, constant client computation).

8 Conclusion

In this work, we identify a fundamental conflict in deduplication-based cloud storage systems that, CSPs
want to remove duplicate data (i.e., deduplication) to save storage space, while data owners want to protect
ownership of their outsourced multimedia data by embedding watermarks which may hinder deduplication.
We design a deduplication-friendly watermarking (DEW) scheme that can resolve the aforementioned conflict.
A salient feature of our design is that, it does not require any interaction among data owners as well as any
trusted third party. Security analysis and experimental evaluation show that DEW is secure at the cost of a
modest additional overhead.

References

1. “Amazon simple storage service,” 2019. http://aws.amazon.com/cn/s3/.
2. “Icloud,” 2019. https://www.icloud.com/.
3. “Microsoft azure,” 2019. http://www.windowsazure.cn/?fb=002.
4. “Cisco global cloud index: Forecast and methodology, 2016 2021 white paper,” 2018. https://www.cisco.com/c/

en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html.
5. D. T. Meyer and W. J. Bolosky, “A study of practical deduplication.,” ACM Transactions on Storage, vol. 7,

no. 4, pp. 1–1, 2012.
6. F. Rashid and A. Miri, “Deduplication practices for multimedia data in the cloud,” in Guide to Big Data Appli-

cations, pp. 245–271, Springer, 2018.
7. A. Z. Tirkel, G. Rankin, R. Van Schyndel, W. Ho, N. Mee, and C. F. Osborne, “Electronic watermark,” Digital

Image Computing, Technology and Applications (DICTA’93), pp. 666–673, 1993.
8. M. Bellare, S. Keelveedhi, and T. Ristenpart, “Message-locked encryption and secure deduplication,” in Annual

International Conference on the Theory and Applications of Cryptographic Techniques, pp. 296–312, Springer,
2013.

9. M. Bellare, S. Keelveedhi, and T. Ristenpart, “DupLESS: Server-aided encryption for deduplicated storage,” in
USENIX Conference on Security, pp. 179–194, 2013.

10. A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11, pp. 612–613, 1979.
11. J. Liu, N. Asokan, and B. Pinkas, “Secure deduplication of encrypted data without additional independent

servers,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pp. 874–885, 2015.

12. J. R. Douceur, A. Adya, W. J. Bolosky, S. Dan, and M. Theimer, “Reclaiming space from duplicate files in a
serverless distributed file system,” in International Conference on Distributed Computing Systems, pp. 617–624,
2002.

13. “Known attacks towards convergent encryption,” 2013. https://tahoe\-lafs.org/hacktahoelafs/drew_pert
tula.html.

14. B. Chen, R. Curtmola, G. Ateniese, and R. Burns, “Remote data checking for network coding-based distributed
storage systems,” in Proceedings of the 2010 ACM workshop on Cloud computing security workshop, pp. 31–42,
ACM, 2010.

15. B. Chen and R. Curtmola, “Towards self-repairing replication-based storage systems using untrusted clouds,” in
Proceedings of the third ACM conference on Data and application security and privacy, pp. 377–388, ACM, 2013.

16. B. Chen, A. K. Ammula, and R. Curtmola, “Towards server-side repair for erasure coding-based distributed
storage systems,” in Proceedings of the 5th ACM Conference on Data and Application Security and Privacy,
pp. 281–288, ACM, 2015.

17. B. Chen and R. Curtmola, “Remote data integrity checking with server-side repair,” Journal of Computer Secu-
rity, vol. 25, no. 6, pp. 537–584, 2017.

18. B. Chen, “New directions for remote data integrity checking of cloud storage,” 2014.
19. S. Quinlan and S. Dorward, “Venti: A new approach to archival storage.,” in FAST, vol. 2, pp. 89–101, 2002.

17

20. “Dropbox,” 2019. https://www.dropbox.com/.
21. S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of ownership in remote storage systems.,” in

ACM Conference on Computer and Communications Security, pp. 491–500, ACM, 2011.
22. I. J. Cox, M. L. Miller, J. A. Bloom, and C. Honsinger, Digital watermarking, vol. 53. Springer, 2002.
23. D. Gordon, Discrete Logarithm Problem. Boston, MA: Springer US, 2011.
24. L. Lei, Q. Cai, B. Chen, and J. Lin, “Towards efficient re-encryption for secure client-side deduplication in public

clouds,” in International Conference on Information and Communications Security, pp. 71–84, Springer, 2016.
25. H. Shacham and B. Waters, “Compact proofs of retrievability,” in International Conference on the Theory and

Application of Cryptology and Information Security, pp. 90–107, Springer, 2008.
26. G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song, “Provable data possession

at untrusted stores,” in Proceedings of the 14th ACM conference on Computer and communications security,
pp. 598–609, Acm, 2007.

27. D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels in cloud services: Deduplication in cloud storage,”
IEEE Security & Privacy, vol. 8, no. 6, pp. 40–47, 2010.

28. “Pairing based cryptographic library,” 2019. https://crypto.stanford.edu/pbc/.
29. J. Li, C. Qin, P. P. C. Lee, and J. Li, “Rekeying for encrypted deduplication storage,” in IEEE/IFIP International

Conference on Dependable Systems and Networks, 2016.
30. R. Di Pietro and A. Sorniotti, “Boosting efficiency and security in proof of ownership for deduplication,” in

Proceedings of the 7th ACM Symposium on Information, Computer and Communications Security, pp. 81–82,
ACM, 2012.

31. C. C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic provable data possession,” ACM Trans-
actions on Information and System Security (TISSEC), vol. 17, no. 4, p. 15, 2015.

32. B. Chen and R. Curtmola, “Robust dynamic provable data possession,” in 2012 32nd International Conference
on Distributed Computing Systems Workshops, pp. 515–525, IEEE, 2012.

33. A. Juels and B. S. Kaliski Jr, “Pors: Proofs of retrievability for large files,” in Proceedings of the 14th ACM
conference on Computer and communications security, pp. 584–597, Acm, 2007.

18

